Антибиотики нарушающие синтез клеточной стенки бактерий

Антибиотики, подавляющие синтез бактериальной клеточной стенки

Антибиотики нарушающие синтез клеточной стенки бактерий

К данной группе относятся:

  • пенициллины,
  • цефалоспорины,
  • циклосерин.

Пенициллины. Продуцентами пенициллинов являются плесневые грибы рода Penicillium, которые в процессе своей жизнедеятел'ь-ности образуют несколько видов пенициллинов. Наиболее активным природным соединением является бензилпенициллин.

Остальные виды пенициллинов отличаются от него тем, что вместо бензильного радикала (С2Н5-СН2-) содержат другие.

Основной честью молекулы всех пенициллинов является 6-аминопенициллановая кислота — сложное гетероциклическое соединение, состоящее из бета-лактамного и тиазолинового колец.

Путем присоединения к пенициллановой кислоте вместо бензильного различных других ради-олов были получены полусинтетические пенициллины нескольких ююлений, отличающиеся друг от друга антибактериальными спектрами, устойчивостью к пенициллиназе и фармакологическими свойствами.

К 1-му поколению относят: а) природные пенициллины — бенилпенициллин; б) пенициллиназоустойчивые полусинтетические пенициллины — метициллин, оксациллин, клоксациллин, нафциллин; в) аминопенициллины с расширенным антибактериальным спектром — ампициллин (петриксил), амоксициллин, циклоциллин и др. Ко 2-3-му поколениям относят карбоксипенициллины: карбеницил-лин, тикарциллин и др. К 4-му поколению относят пенициллины с широким антибактериальным спектром: а) уреидопенициллины — мезлоциллин, азлоциллин, пиперациллин и др.; б) амидинопенициллины — мециллам и др.

Пенициллиназа относится к ферментам бета-лактамной группы, вызывающим гидролитическое расщепление бета-лактамного кольца с образованием неактивной бензилпенициллановой кислоты.

Как уже отмечалось, синтез данного фермента контролируется R-плазмидами многих видов бактерий.

Устойчивость метициллина, оксациллина и других полусинтетических пенициллинов к пенициллиназе связана с защитой бета-лактамного кольца от данного фермента.

Особый интерес приобретают фиксированные комбинации пенициллинов с ингибиторами бета-лактамаз. К ним относятся препараты из группы клавулановой кислоты (тиметин, амоксиклав) и производные сульфонов пенициллановой кислоты (сульбактам, тазобактам). Эти комбинации позволяют устранить многие недостатки пенициллинов при сохранении их достоинств.

Резистентность стафилококков к пенициллинам связана с продукцией пенициллиназы, а грамотрицательных бактерий — с данным ферментом, а также с особенностями структуры и химического состава (содержание большого количества липополисахарида) в клеточных стенках.

Антибактериальный спектр пенициллины 1-го поколения имеют сравнительно узкий: природные антибиотики (бензилпенициллин) действуют преимущественно на гноеродные кокки и некоторые грамположительные бактерии (палочки дифтерии, клостридии и др.).

Типичными представителями противостафилококковых пенициллинов являются оксациллин, метициллин и другие препараты, устойчивые к пенициллиназе. У аминопенициллинов и карбокси-пенициллинов антибактериальный спектр расширен за счет ряда грамотрицательных бактерий (прежде всего энтеробактерий).

Уреидопеницилинны активны в отношении некоторых других грамотрицательных бактерий, в частности псевдомонад. Это объясняется их способностью проникать через липополисахарид клеточных стенок грамотрицательных бактерий.

Механизм антибактериального действия всех пенициллинов связан с нарушением синтеза клеточной стенки за счет блокирования реакции транспептидирова-ния в синтезе пептидогликана (муреина).

Таким образом, пенициллин действует только на растущие клетки, в которых осуществляются процессы биосинтеза пептидогликана.

Вследствие отсутствия пептидогликана в клетках человека пенициллин не оказывает на них ингибирующего действия (отсутствие «мишени»), т.е. является практически нетоксичным антибиотиком.

Цефалоспорины — большая группа природных антибиотиков, продуцируемых грибами рода Cephalosporium, и их полусинтетических производных. Основным структурным компонентом цефалоспо-ринов является 7-аминоцефалоспориновая кислота (7-АЦК), которая имеет сходство с 6-аминопенициллановой кислотой (6-АПК), основой пенициллинов.

Однако различия в химической структуре этих двух групп антибиотиков делают цефалоспорины устойчивыми к пенициллиназам, редуцируемым стафилококками и другими грамположительными бактериями, но могут разрушаться пенициллиназами грамотрицательных бактерий и цефалоспориназами.

К цефалоспоринам относятся антибиотические препараты несколько поколений, отличающиеся друг от друга по антибактериальному спектру и фармакологическим свойствам. К цефалоспоринам 1-го поколения относятся цефалоридин (цепорин), цефалоксин, цефалотин (кефлин) и др.

; 2-го поколения — цефамандол, цефуроксим, цефазолин (кефзол), мандол и др. 3-го поколения — кефлор, цефтазидим (фортум), клафоран, кетоцеф и др. Антибактериальный спектр цефалоспоринов 1-го поколения в целом достаточно широк.

Они характеризуются высокой активностью против грамположительных бактерий и выборочно в отношении грамотрицательных. По действию на стафитококки и эшерихии они превосходят пенициллины. В терапевтических концентрациях преобладает бактерицидное действие препаратов.

Однако так же, как и к пенициллинам, к ним устойчивы псевдомонады, протеи, многие энтерококки, бактероиды.

Источник: https://www.eurolab.ua/microbiology-virology-immunology/3660/3671/30755

Антибиотики, нарушающие клеточную стенку бактерий

Большинство бактерий, в отличие от клеток организма человека, кроме клеточной мембраны (цитоплазматическая мембрана) имеют снаружи клеточную стенку (Mycoplasma pneumoniae не имеет клеточной стенки).

Грамотрицательные бактерии имеют дополнительно наружную оболочку (наружную мембрану), состоящую из липополисахаридов. Через поры наружной мебраны могут проходить гидрофильные вещества. В микобактериях наружная мембрана в значительной степени состоит из миколиевых кислот (жирные кислоты).

Клеточная стенка на 50 % состоит из слоев пептидогликана (муреин; от лат. murus – стена) – длинные цепи дисахарида, соединенные пептидными мостиками.

В грамположительных бактериях давление внутри клеток составляет около 20 атм., и клеточная стенка содержит до 40 слоев пептидогликана. В грамотрицательных бактериях давление внутри клеток составляет около 5 атм., и клеточная стенка содержит несколько слоев пептидогликана.

Пептидогликан состоит из цепочек, образованных повторяющимся (до 60 раз) комплексом двух аминосахаров – Ν-ацетилмурамовой кислоты и Ν-ацетилглюкозамина. К каждой молекуле Ν-ацетилмурамата присоединен тетрапептид. Между тетрапептидами соседних цепочек при участии транспептидазы образуются пептидные мостики. Таким образом пептидогликан образует прочный каркас клеточной стенки (рис. 81).

Рис. 81. Схема структуры пептидогликана. AM – Ν-ацетилмурамат; АГ – Ν-ацетилглюкозамин.

Образование пептидогликана начинается в цитоплазме. К Ν-ацетилмурамату присоединяется вначале трипептид, а затем еще 2 аминокислоты – D-ala-D-ala (в дальнейшем 5-я аминокислота – D-ala – удаляется).

К тому соединению присоединяется за счёт двойной фосфатной связи липидный пирофосфатный переносчик С55 (содержит 55 атомов углерода), который осуществляет транспорт фрагмента пептидогликана через плазматическую мембрану в клеточную стенку.

В плазматической мембране к Ν-ацетилмурамату присоединяется Ν-ацетилглюкозамин, а затем боковой пентапептид, соединенный с 3-й аминокислотой пентапептида Ν-ацетилмурамата.

Образовавшийся блок пептидогликана переносится в клеточную стенку, где встраивается в общую структуру пептидогликана с помощью транспептидаз, которые соединяют боковой пентапептид с тетрапептидом одного из Ν-ацетилмураматов основного массива пептидогликана. После этого липидный транспортер С55 дефосфорилируется специальной фосфатазой и вновь участвует в транспорте блоков пептидогликана.

При делении микробных клеток аутолитические ферменты (аутолизины, в частности, L-аланинамидаза) разрушают пептидные связи между цепями пептидогликана. Активность аутолизинов уменьшается под влиянием специального ингибитора.

Средства, нарушающие клеточную стенку бактерий, препятствуют синтезу пептидогликана или нарушают связи между цепями пептидогликана.

При этом прочность клеточной стенки снижается и растущие бактерии гибнут.

К антибиотикам, нарушающим клеточную стенку бактерий, относятся:

1) бета-лактамные антибиотики;

2) гликопептидные антибиотики;

3) циклосерин;

4) бацитрацин;

5) производные фосфоновой кислоты.

Бета-лактамные антибиотики

Молекулы этих антибиотиков содержат бета-лактамное кольцо – лактонный цикл, включающий аминогруппу в бета-положении (бета-лактамины).

Бета-лактамные антибиотики ингибируют транспептидазы, участвующие в синтезе пептидогликана клеточной стенки бактерий и таким образом нарушают синтез пептидогликана.

Кроме того, бета-лактамные антибиотики ингибируют ингибитор аутолизинов, которые в норме участвуют в расщеплении пептидогликана при делении клеток. При этом аутолизины активируются.

Нарушение синтеза пептидогликана и активация аутолизинов приводят к разрушению клеточной стенки бактерий и лизису бактерий.

Среди бета-лактамных антибиотиков выделяют:

1) пенициллины;

2) цефалоспорины;

3) карбапенемы.

Пенициллины

В 1928 г. Alexander Fleming (Великобритания) обнаружил в чашке Петри с культурой стафилококков противомикробные свойства зеленой плесени (Penicillium), выделил чистую культуру зеленой плесени и назвал её пенициллином. В 1940 г.

его соотечественники Н. W. Florey и Е. В. Chain получили действующее начало зеленой плесени и дали ему то же название – пенициллин. За открытие пенициллина и его терапевтического действия A. Fleming, H.W. Florey и Е.В. Chain в 1945 г.

получили Нобелевскую премию.

В 1942 г. пенициллин был получен в Советском Союзе З. В. Ермольевой.

В структуре пенициллина выделяют бета-лактамный цикл (лактонный цикл с аминогруппой в бета-положении) и тиазолидиновый цикл.

Различают биосинтетические (природные) и полусинтетические пенициллины.

К биосинтетическим пенициллинам относятся:

1) бензилпенициллины;

2) феноксиметилпенициллин.

Полусинтетические пенициллины делят на:

1) пенициллины, устойчивые к пенициллиназе (изоксазолиловые пенициллины);

2) пенициллины широкого спектра действия:

а) аминопенициллины,

б) карбоксипенициллины,

в) уреидопенициллины.

Бензилпенициллины

Бензилпенициллины нарушают связи между цепями пептидогликана клеточной стенки бактерий за счёт:

1) ингибирования транспептидазы, которая способствует образованию пептидных мостиков, соединяющих цепи пептидогликана;

2) снижения активности ингибитора аутолизинов, необходимых для расщепления пептидогликана при делении бактериальных клеток (рис. 82).

Рис. 82. Механизм действия пенициллинов. AM – Ν-ацетилмурамат; АГ – Ν-ацетилглюкозамин; ТП – транспептидаза; АП – аутолизины; И – ингибитор аутолизинов.

В результате нарушается прочность клеточной стенки бактерий и происходит лизис растущих бактерий.

На большинство чувствительных к бензилпенициллинам бактерий эти антибиотики оказывают бактерицидное действие. У фекальных энтерококков отсутствуют аутолизины, и на эти возбудители бензилпенициллины оказывают бактериостатическое действие.

Бензилпенициллины действуют в основном на грамположительные микроорганизмы. Высокоэффективны (являются препаратами выбора) в отношении стрептококков, пневмококков, бледной трепонемы, палочек сибирской язвы, палочек дифтерии, листерий, возбудителей газовой гангрены и столбняка, болезни Лайма. Из грамотрицательных бактерий к бензилпенициллинам чувствительны гонококки и менингококки.

Бензилпенициллины действуют бактерицидно на некоторые штаммы стафилококков, однако большинство штаммов стафилококков (80–90 %) приобрели устойчивость к бензилпенициллинам, так как стафиллококки этих штаммов вырабатывают β-лактамазу-1 (пенициллиназу) – фермент, который разрушает β-лактамный цикл молекулы бензилпенициллинов.

Не действуют бензилпенициллины на шигеллы, сальмонеллы, синегнойную палочку, гемофильную палочку, клебсиеллы, риккетсии, легионеллы, моракселлы, микоплазмы, хламидии, бактероиды, микобактерии туберкулёза.

В желудке бензилпенициллины разрушаются хлористоводородной кислотой, поэтому внутрь эти препараты не назначают, а вводят обычно внутримышечно.

Бензилпенициллины проникают в полость перикарда, плевральную полость, суставы через плаценту, но плохо проникают через гематоэнцефалический барьер (концентрация в спинномозговой жидкости – около 1 % от концентрации в крови). Однако при воспалении мозговых оболочек (менингиты) проницаемость гематоэнцефалического барьера повышается и концентрация бензилпенициллинов в спинномозговой жидкости повышается до 5 % от концентрации в крови.

Бензилпенициллины на 90 % выделяются почками (секретируются в проксимальных канальцах почек), а также выделяются со слюной, с желчью, молоком.

В медицинской практике применяют в основном бензилпенициллин (натриевая соль бензилпенициллина), прокаина бензилпенициллин, беизатина бензилпенициллин. Указанные препараты выпускают во флаконах в виде сухого вещества, которое разводят перед введением и вводят внутримышечно. Бензилпенициллин (натриевую соль бензилпенициллина), кроме того, можно вводить внутривенно.

Дозируют препараты бензилпенициллина в ЕД или граммах (1 млн ЕД = 600 мг).

При внутримышечном введении препараты различаются по скорости наступления эффекта, концентрации в крови, длительности действия.

Бензилпенициллин (Benzylpenicillinum; натриевая соль бензилпенициллина) вводят чаще всего внутримышечно. После введения в крови быстро создается высокая концентрация препарата, которая удерживается около 4 ч.

Препарат особенно показан при острых бактериальных инфекциях – острых стрептококковых инфекциях (тонзиллит, эндокардит, рожа, скарлатина), круппозной пневмонии (вызывается пневмококками), абсцессах мозга, ЛОР-инфекциях, клещевом боррелиозе (болезнь Лайма), дифтерии, сибирской язве, лептоспирозе, газовой гангрене, остеомиелите и других инфекциях, вызванных чувствительными к бензилпенициллину микроорганизмами. При стрептококковом эндокардите, менингококковом менингите, сибирской язве препарат вводят внутривенно медленно или капельно.

Прокаина бензилпенициллин (Procaini benzylpenicillinum; прокаиновая соль бензилпенициллина; новокаиновая соль бензилпенициллина) после внутримышечного введения всасывается медленно; концентрация в крови ниже, чем при введении натриевой соли, однако продолжительность действия значительно больше – до 12 ч. Применяют прокаина бензилпенициллин в основном при хроническом течении заболеваний – при сифилисе (по 600¢000 ЕД 2 раза в сутки в течение 10 дней), сибирской язве, дифтерии, инфекциях ротовой полости.

Бензатина бензилпенициллин (Benzatini benzylpenicillinum; бициллин-1, экстенциллин, ретарпен) после внутримышечного введения всасывается очень медленно; концентрация в крови невысокая; длительность действия препарата составляет (в зависимости от дозы) 1–2 недели.

Применяют бензатина бензилпенициллин для лечения сифилиса. При лечении первичного сифилиса препарат вводят внутримышечно в дозе 2,4 млн ЕД 2–3 раза с интервалами в 1 неделю.

Кроме того, бензатина бензилпенициллин применяют для профилактики сезонных обострений ревматизма, при стрептококковом тонзиллите, фарингите, роже, дифтерии.

Чтобы ускорить действие бензатина бензилпенициллина, к нему добавляют натриевую и прокаиновую соли бензилпенициллина (Бициллин-3) или только прокаиновую соль (Бициллин-5). Бициллин-3 вводят внутримышечно 1 раз в 6 дней, а бициллин-5 – 1 раз в 4 недели.

Бензилпенициллины в целом малотоксичны, но могут вызывать реакции гиперчувствительности – крапивницу, гипертермию, боли в суставах, сыпи, ангионевротический отёк, анафилактический шок. Возможны гемолитическая анемия, интерстициальный нефрит, нейтропения, тромбоцитопения. В больших дозах или при тяжёлой почечной недостаточности бензилпенициллины могут вызывать энцефалопатию, судороги, кому.

Читайте также:  Уколы антибиотики при воспалении легких

Феноксиметилпенициллин

Феноксиметилпенициллин (Phenoxymethylpenicillinum) по спектру противомикробного действия сходен с бензилпенициллинами, но менее эффективен. В отличие от бензилпенициллинов, устойчив к действию хлористоводородной кислоты желудочного сока.

Назначают феноксиметилпенициллин внутрь 4 раза в сутки в тех случаях, когда нет необходимости срочного действия, – для профилактики сезонных обострений ревматизма, при хроническом стрептококковом тонзиллите, фарингите и др.

Источник: https://pdnr.ru/a7673.html

Антибиотики

Антибиотики — вещества природного или полусинтетического происхождения, подавляющие рост живых клеток, чаще всего прокариотических или простейших.

По ГОСТ 21507-81 (СТ СЭВ 1740-79)
Антибиотик — вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже — немицелиальными бактериями.

— Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств;
— Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Терминология

Полностью синтетические препараты, не имеющие природных аналогов и оказывающие сходное с антибиотиками подавляющее влияние на рост бактерий, традиционно было принято называть не антибиотиками, а антибактериальными химиопрепаратами.

В частности, когда из антибактериальных химиопрепаратов известны были только сульфаниламиды, принято было говорить обо всём классе антибактериальных препаратов как об «антибиотиках и сульфаниламидах».

Однако в последние десятилетия в связи с изобретением многих весьма сильных антибактериальных химиопрепаратов, в частности фторхинолонов, приближающихся или превышающих по активности «традиционные» антибиотики, понятие «антибиотик» стало размываться и расширяться и теперь часто употребляется не только по отношению к природным и полусинтетическим соединениям, но и к многим сильным антибактериальным химиопрепаратам.

Классификация

Огромное разнообразие антибиотиков и видов их воздействия на организм человека явилось причиной классифицирования и разделения антибиотиков на группы. По характеру воздействия на бактериальную клетку антибиотики можно разделить на три группы:

— бактериостатические (бактерии живы, но не в состоянии размножаться), — бактерициды (бактерии умертвляются, но физически продолжают присутствовать в среде),

— бактериолитические (бактерии умертвляются, и бактериальные клеточные стенки разрушаются).

Классификация по химической структуре, которую широко используют в медицинской среде, состоит из следующих групп:

  • Бета-лактамные антибиотики, делящиеся на две подгруппы
    • Пенициллины — вырабатываются колониями плесневого грибка Penicillium;
    • Цефалоспорины — обладают схожей структурой с пенициллинами. Используются по отношению к пенициллинустойчивым бактериям.
  • Макролиды — антибиотики со сложной циклической структурой. Действие — бактериостатическое.
  • Тетрациклины — используются для лечения инфекций дыхательных и мочевыводящих путей, лечения тяжелых инфекций типа сибирской язвы, туляремии, бруцеллёза. Действие — бактериостатическое.
  • Аминогликозиды — обладают высокой токсичностью. Используются для лечения тяжелых инфекций типа заражения крови или перитонитов.
  • Левомицетины — Использование ограничено по причине повышенной опасности серьезных осложнений — поражении костного мозга, вырабатывающего клетки крови. Действие — бактерицидное.
  • Гликопептидные антибиотики нарушают синтез клеточной стенки бактерий. Оказывают бактерицидное действие, однако в отношении энтерококков, некоторых стрептококков и стафилококков действуют бактериостатически.
  • Линкозамиды оказывают бактериостатическое действие, которое обусловлено ингибированием синтеза белка рибосомами. В высоких концентрациях в отношении высокочувствительных микроорганизмов могут проявлять бактерицидный эффект.
  • Противогрибковые — разрушают мембрану клеток грибков и вызывают их гибель. Действие — литическое. Постепенно вытесняются высокоэффективными синтетическими противогрибковыми препаратами.

Источник: Википедия

Источник: https://GMPnews.ru/terminologiya/antibiotic/

Антибиотики, нарушающие клеточную стенку бактерий

Большинство бактерий, кроме клеточной мембраны (цитоплаз-матическая мембрана), имеют снаружи клеточную стенку, которая содержит слои пептидогликана (муреин; длинные цепи дисахарида, соединенные пептидными мостиками). Грамотрицательные бактерии имеют дополнительно наружную оболочку.

Пептидогликан состоит из цепочек, образованных повторяющимся (до 60 раз) комплексом двух аминосахаров — N-ацетилмурамо-вой кислоты и N-ацетилглкжозамина. К каждой молекуле N-аце-тилмурамата присоединен тетрапептид. Между тетрапептидами соседних цепочек при участии транспептидазы образуются пептидные мостики. Таким образом, пептидогликан образует прочный каркас клеточной стенки.

Образование пептидогликана начинается в цитоплазме. К N-аце-тилмурамату присоединяется вначале трипептид, а затем еще 2 аминокислоты — D-ala—D-ala (в дальнейшем 5-я аминокислота — D-ala удаляется).

В цитоплазматической мембране присоединяется N-ацетилглюкозамин и образовавшийся блок пептидогликана переносится пирофосфатным переносчиком С55 в клеточную стенку, где встраивается в общую структуру пептидогликана.

При делении микробных клеток активируется муреингидролаза, которая разрушает транспептидные мостики и таким образом расщепляет пептидогликан (муреин).

Средства, нарушающие клеточную стенку бактерий, препятствуют синтезу пептидогликана или нарушают связи между цепями пептидогликана. При этом прочность клеточной стенки снижается и растущие бактерии гибнут.

Так как клетки органов и тканей человека не имеют клеточной стенки, антибиотики, которые нарушают клеточную стенку бактерий, относительно мало токсичны для человека.

К антибиотикам, нарушающим клеточную стенку бактерий, относятся бета-лактамные антибиотики, гликопептидные антибиотики, циклосерин и бацитрацин.

29.1.1.1. Бета-лактамные антибиотики

Молекулы этих антибиотиков (бета-лактаминов) содержат бета-лактамное кольцо — лактонный цикл, включающий азот.

Бета-лактамные антибиотики ингибируют транспептидазу и, таким образом, нарушают синтез пептидогликана. Среди бета-лактамных антибиотиков выделяют:

1) пенициллины,

2) цефалоспорины,<\p>

3) карбапенемы,

4) монобактамы.

Пенициллины

В 1929 г. A. Fleming (Великобритания) обнаружил противомик-робные свойства зеленой плесени (Penicillium), а в 1940 г. его соотечественники H.W. Florey и Е.В. Chain получили пенициллин. За открытие пенициллина и его терапевтического действия все эти исследователи в 1945 г. получили Нобелевскую премию.

В 1942 г. пенициллин был получен в Советском Союзе З.В. Ермольевой.

Различают биосинтетические и полусинтетические пеницилли-ны. К биосинтетическим пенициллинам относятся препараты бензилпенициллина и феноксиметилпенициллин.

Полусинтетические пенициллины делят на 1) пенициллины, устойчивые к пенициллиназе, 2) пенициллины широкого спектра действия.

29.1.1.1.1.1. Бензилпенициллины

Бензилпенициллины нарушают связи между цепями пептидогликана клеточной стенки бактерий — снижают активность транс-пептидазы, которая способствует образованию пептидных мостиков, соединяющих цепи пептидогликана (рис. 64), а также снижают активность ферментов, которые ингибируют муреингидралазу. 1 В результате нарушается прочность клеточной стенки бактерий, что проявляется бактерицидным эффектом.

Бензилпенициллины действуют в основном на грамположитель-ные микроорганизмы.

Бензилпенициллины высоко эффективны (являются препаратами выбора) в отношении стрептококков, пневмококков, бледной трепонемы, палочки сибирской язвы, палочки дифтерии, возбудителей газовой гангрены и столбняка, болезни Лайма, актиномице-тов. Несколько менее чувствительны к бензилпенициллинам гонококки и менингококки.

Большинство штаммов стафилококков приобрели устойчивость к бензилпенициллинам, так как стафилококки этих штаммов вырабатывают пенициллиназу (бета-лактамазу-1) — фермент, который разрушает молекулы бензилпенициллинов.

В медицинской практике применяют в основном бензилпени-циллин (натриевая соль бензилпенициллина), прокаина бензилпе-нициллин, бензатина бензилпенициллин.

Указанные препараты выпускают во флаконах в виде сухого вещества, которое разводят перед введением и вводят внутримышечно (при назначении внутрь эти препараты неэффективны, так как разрушаются НС1 желудочного сока).

Бензилпенициллин, кроме того, можно вводить внутривенно.

Дозируют препараты бензилпенициллина в ЕД или долях грамма (1 миллион ЕД = 600 мг).

При внутримышечном введении препараты различаются по скорости наступления эффекта, концентрации в крови, длительности действия.

После внутримышечного введения бензилпенициллина(натриевая соль бензилпенициллина; пенициллин G) в крови быстро создается высокая концентрация препарата, которая удерживается около 4 ч.

Препарат особенно показан при острых бактериальных инфекциях — острых стрептококковых инфекциях, круппозной пневмонии (вызывается пневмококками), ЛОР-инфекциях (фарингит, средний отит), болезни Лайма у детей, сибирской язве, сифилисе, актиномикозе, газовой гангрене и других инфекциях, вызванных чувствительными к бензилпенициллину микроорганизмами. Внутривенно медленно или капельно препарат вводят при стрептококковом эндокардите, менингококковом менингите.

Прокаина бензилпенициллин(новокаиновая соль бензилпенициллина) после внутримышечного введения всасывается медленно; концентрация в крови ниже, чем при введении натриевой соли, но продолжительность действия значительно больше — до 12 ч.

Применяют препарат при сифилисе, сибирской язве, дифтерии, инфекциях ротовой полости, в основном при хроническом течении заболеваний.

Бензатина бензилпенициллин(бициллин-1) после внутримышечного введения всасывается очень медленно; концентрация в крови невысокая; длительность действия препарата составляет в зависимости от дозы 1—2 нед. Применяется для лечения сифилиса, при

стрептококковом фарингите, дифтерии, для профилактики сезонных обострений ревматизма.

Бензилпенициллины в целом мало токсичны, но могут вызывать реакции гиперчувствительности — крапивницу, гипертермию, боли в суставах, сыпи, ангионевротический отек, анафилактический шок. Возможны гемолитическая анемия, интерстициальный нефрит, нейтропения, тромбоцитопения. В больших дозах или при тяжелой почечной недостаточности бензилпенициллины могут вызывать энцефалопатию, судороги, кому.

29.1.1.1.1.2. Феноксиметилпенициллин

По спектру противомикробного действия феноксиметилпенициллин сходен с бензилпенициллинами, но менее эффективен. В отличие от бензилпенициллинов устойчив к действию НС1 желудочного сока.

Препарат назначают внутрь 4 раза в сутки для профилактики сезонных обострений ревматизма, при хроническом стрептококковом фарингите, среднем отите, инфекциях ротовой полости.

29.1.1.1.1.3. Полусинтетические пенициллины, устойчивые к пенициллиназе

(антистафиллококковые пенициллины; изоксазолиловые пенициллины)

Первым препаратом этой группы был метициллин. В настоящее время применяют клоксациллин, диклоксациллин, флуклоксациллин, оксациллин.

Эти препараты по спектру противомикробного действия сходны с бензилпенициллинами, но менее эффективны. Практически неэффективны в отношении бледной трепонемы.

Существенным их отличием от бензилпенициллинов является эффективность в отношении стафилококков, вырабатывающих пенициллиназу (бета-лактамазу-1).

Основным показанием к назначению указанных препаратов являются инфекции, вызванные стафилококками, устойчивыми к бен-зилпенициллинам.

Препараты назначают внутрь; клоксациллин и оксациллин, кроме того, вводят парентерально.

Штаммы стафилококков, устойчивые к данным препаратам, называют метициллин-резистентными стафилококками.

29.1.1.1.1.4. Пенициллины широкого спектра действия

В этой группе пенициллинов выделяют аминопенициллины, кар-боксипенициллины, уреидопенициллины.

Аминопенициллины — амоксициллин, ампициллин действуют на те же возбудители, что и бензилпенициллины (за исключением бледной трепонемы), а также на ряд грамотрицательных возбудителей — сальмонеллы, шигеллы, кишечную палочку.

Амоксициллинлучше всасывается в кишечнике. Препарат назначают внутрь каждые 8 ч. При этом создаются достаточно высокие концентрации препарата в крови.

Применяют амоксициллин при синуситах, среднем отите, инфекциях верхних дыхательных путей и бронхов, пневмониях, инфекциях в зубоврачебной практике, инфекциях желчевыводящих путей (холецистит, холангит), мочеполовой системы (пиелонефрит, простатит, цистит, уретрит), остеомиелите, гонорее, гинекологических инфекциях (аднексит, эндометрит), болезни Лайма у детей, для эрадикации Н. pylori.

Побочные эффекты амоксициллина: тошнота, рвота, глоссит, стоматит, диарея, сыпи, реакции гиперчувствительности (крапивница, ангионевротический отек, анафилактические реакции, гемолитическая анемия, интерстициальный нефрит), при больших дозах или почечной недостаточности — судорожные реакции.

Ампициллинхуже всасывается и при приеме внутрь более эффективен при инфекциях желудочно-кишечного тракта. Частично выделяется с желчью (энтерогепатическая циркуляция). В качестве резервного препарата может применяться при бациллярной дизентерии, брюшном тифе.

При парентеральном введении (внутримышечно, внутривенно медленно или капельно) ампициллин может быть эффективен при септицемии, менингите, эндокардите, перитоните, холецистите, остром пиелонефрите, гинекологических инфекциях, остеомиелите, вызванных чувствительными к препарату микроорганизмами.

Аминопенициллины не действуют на микроорганизмы, которые вырабатывают бета-лактамазы (в частности, пенициллиназу). Поэтому аминопенициллины целесообразно назначать вместе с ингибиторами бета-лактамаз — клавулановой кислотой или сульбакта-мом. Применяют комбинированные препараты — амоксиклав (амоксициллин + клавулановая кислота), уназин (ампициллин + сульбактам).

Амоксиклав(аугментин) эффективен в отношении кокков, гемо-фильной палочки, кишечной палочки, шигелл, легионелл, сальмонелл, протея, клебсиелл, анаэробных возбудителей, в том числе Bacteroides fragilis и ряда других микроорганизмов.

Препарат назначают внутрь 3 раза в день при остром среднем отите, инфекциях ротовой полости (пародонтиты, абсцессы и др.), дыхательных и мочевыводящих путей, костной ткани, суставов, кожи, мягких тканей. В тяжелых случаях препарат вводят внутривенно.

Карбоксипенициллины — карбенициллин(вводят внутримышечно) и карфециллин(назначают внутрь) сходны по спектру действия с аминопенициллинами. В отличие от аминопенициллинов действуют на синегнойную палочку.

Уреидопенициллины — азлоциллин, пиперациллин— антибиотики широкого спектра действия. Эффективны в отношении штаммов синегнойной палочки, устойчивых к карбоксипенициллинам.

Карбоксипенициллины и уреидопенициллины называют анти-синегнойными пенициллинами и пременяют в основном при заболеваниях, вызванных синегнойной палочкой.

29.1.1.1.1.5. Побочные эффекты пенициллинов

Пенициллины малотоксичны, однако чаще, чем другие антибиотики, вызывают реакции гиперчувствительности: крапивницу, ан-гионевротический отек; возможны повышение температуры, арт-ралгии, поражения почек, анафилактический шок.

Цефалоспорины

Антибиотики широкого спектра действия. Действуют на стафилококки, устойчивые к бензилпенициллинам. Выделяют 4 поколения цефалоспоринов (табл. 14).

Цефалоспорины I поколения действуют на грамположительные кокки (стафилококки, стрептококки, пневмококки), клебсиеллы, кишечную палочку.

Цефалоспорины II поколения, кроме того, эффективны в отношении менингококков, гонококков, гемофильной палочки. Некоторые препараты (например, цефокситин) действуют на бактероиды.

Читайте также:  Как принимать метронидазол при гарденелезе

Цефалоспорины III поколения в меньшей степени действуют на грамположительную флору и в большей степени — на грамотрица-тельные бактерии. Высокоэффективны в отношении гонококков, менингококков, гемофильной палочки, протея, а некоторые препараты (например, цефтазидим) — в отношении синегнойной палочки.

Из этой подгруппы чаще всего применяют цефтазидим и цефтриаксон.

Цефтазидимдействует на синегнойную палочку, клебсиеллы, разные виды протея, кишечную палочку, сальмонеллы, шигеллы, гонококки, менингококки, гемофильную палочку, стрептококки.

Препарат вводят внутримышечно 2—3 раза в день при септицемии, менингите, перитоните, инфекциях ЛОР-органов, дыхательных, мо-чевыводящих, желчевыводящих путей, органов малого таза, костей и суставов.

Цефтриаксонотличается длительностью действия — 24 ч. Вводят внутримышечно 1 раз в сутки или внутривенно капельно при тяжелых инфекциях (септицемия, пневмонии, менингит, острый пиелонефрит, инфекции тазовых органов, остеомиелит, артрит). Неосложненная гонорея излечивается одной внутримышечной инъекцией цефтриаксона.

Цефалоспорины IV поколения действуют на грамположительные и грамотрицательные бактерии; эффективны в отношении синегнойной палочки и протея.

Побочные эффекты цефалоспоринов: аллергические реакции; возможна нефротоксичность, особенно при применении препаратов 1 поколения.

Карбапенемы

Препараты этой группы — меропенеми имипенем— антибиотики «сверхширокого» спектра действия. Неэффективны в отношении большинства штаммов метициллин-резистентных стафилококков.

Вводят внутримышечно или внутривенно при пневмониях, менингитах, сепсисе, инфекциях желудочно-кишечного тракта, мо-чевыводящих путей.

Имипенем инактивируется дегидропептидазой почек, поэтому его назначают вместе с ингибитором этого фермента — циластати-ном; существует комбинированный препарат тиенам.

Монобактамы

Азтреонамдействует на грамотрицательные бактерии: гонококки, менингококки, гемофильную, синегнойную, кишечную палочки, шигеллы, сальмонеллы и др.

Вводят внутримышечно или внутривенно при менингите, сепсисе, пневмонии, инфекциях мочевыводящих путей, вызванных чувствительными к препарату бактериями.

Гликопептидные антибиотики

Гликопептидные антибиотики — ванкомицин, теикопланин нарушают синтез пептидогликана. Эти антибиотики препятствуют: 1) отсоединению блока N-ацетилмурамат—N-ацетилглюкозамин от пиро-фосфатного переносчика С55, 2) включению этого блока в структуру пептидогликана.

Ванкомициндействует бактерицидно, преимущественно на грам-положительные бактерии. Один из немногих антибиотиков, эффективных в отношении метициллин-резистентных стафилококков.

Применяют при тяжелых стафилококковых и стрептококковых инфекциях (септицемия, пневмонии, абсцессы мозга, легких, менингит, перитонит, остеомиелит, стрептококковый эндокардит); вводят внутривенно капельно.

Побочные эффекты ванкомицина: флебиты, артериальная гипотензия, боли в мышцах, кожные высыпания, гипертермия, нейтропения, нарушения функции почек, ототоксическое действие.

При приеме внутрь (препарат практически не всасывается в желудочно-кишечном тракте) ванкомицин высокоэффективен при псевдомембранозном колите (вызывается Clostridium difficile).

Сходными свойствами обладает теикопланин.

Циклосерин

Антибиотик широкого спектра действия. Нарушает синтез пептидогликана. Циклосерин — структурный аналог D-аланина 1)ин-гибирует аланинрацемазу и нарушает образование D-аланина из

L-аланина, 2) ингибирует дипептидсинтетазу и нарушает образование дипептида D-ala — D-ala, 3) нарушает присоединение D-ala — D-ala к трипептиду, соединенному с N-ацетилмураматом. Применяют в основном при туберкулезе (с. 329).

Баиитрацин

Бацитрацин — полипептидный антибиотик. Нарушает синтез пептидогликана: ингибирует липидпирофосфатазу и препятствует восстановлению активности (дефосфорилированию) пирофосфатного переносчика С55 после реализации его транспортной функции.

Действует преимущественно на грамположительные микроорганизмы, в том числе на стафилококки, продуцирующие пенициллиназу. Эффективен в отношении Clostridium difficile. Высокотоксичен.

Применяют местно для лечения инфицированных порезов, царапин, ожогов. В сочетании с неомицином (препарат банеоцин в виде мази или порошка для наружного применения) обладает широким спектром противомикробного действия и применяется при различных бактериальных инфекциях кожи, ожогах, после хирургических вмешательств.

При приеме внутрь практически не всасывается в желудочно-кишечном тракте и может быть применен при псевдомембранозном колите.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/a67759.html

Антибиотики, подавляющие синтез клеточной стенки бактерий

Важная особенность бактериальной клетки, отличающая ее от клеток млекопитающих, — прочная клеточная стенка, окружающая цитоплазматическую мембрану. Эта стенка предохраняет бактериальную клетку от действия осмотического давления, которое в ней приблизительно на 20 атм выше, чем в жидкостях макроорганизма.

Прочность клеточной стенке придают  пептидогликаны, соединенные ковалентными связями. У  грамположительных бактерий стенка имеет толщину 20-80 нм и представляет собой единственную структуру снаружи от цитоплазматической мембраны, у  грамотрицательных бактерий она намного тоньше (1 нм) и покрыта наружной мембраной.

Препараты, нарушающие какое-либо звено синтеза пептидогликанов, их транспорт из клетки и образование пептидных мостиков между их молекулами, подавляют рост бактерий и в большинстве случаев вызывают их гибель.

 Молекула пептидогликана состоит из:

—        остова из двух чередующихся моносахаридов — N-ацетилглюкозамина и N-ацетилмурамовой кислоты;

—        боковых пептидов (обычно из 4 аминокислотных остатков);

—        пептидных мостиков, перекрестно связывающих боковые пептиды.

 Пептидогликаны синтезируются из субъединиц (дисахарид плюс боковой пептид), которые образуются в цитоплазме, а затем транспортируются через цитоплазматическую мембрану на поверхность клетки. В ходе последующего образования пептидных мостиков происходит отщепление концевой аминокислоты боковых пептидов.

 Антибактериальные препараты подавляют синтез клеточной стенки несколькими способами.

Ø  Циклический полипептидный антибиотик  бацитрацин подавляет активацию липидных переносчиков, обеспечивающих транспортировку водорастворимых субъединиц  пептидогликанов через мембрану. Субъединицы накапливаются в цитоплазме, и синтез пептидогликанов прекращается.

Ø  Высокомолекулярные гликопептиды  ванкомицин и  тейкопланин связываются с концевыми аминокислотными остатками (D-аланил-D-аланин) боковых пептидов, когда субъединицы находятся уже на поверхности цитоплазматической мембраны, но еще соединены с липидными переносчиками.

Ø  Гликопептидные антибиотики создают стерические препятствия объединению субъединиц в макромолекулу пептидогликана.

Ø  Бета-лактамные антибиотики —  пенициллины,  цефалоспорины,  карбапенемы и  монобактамы, содержащие четырехчленное бета-лактамное кольцо, препятствуют образованию пептидных мостиков и объединению  пептидогликанов в единую структуру.

Реакцию образования связи между аминокислотными остатками пептидных мостиков и предпоследним остатком D-аланина боковых пептидов (транспептидирование) катализирует фермент  транспептидаза, а необходимая для этого энергия выделяется при отщеплении конечных D-аланиновых остатков боковых пептидов. Бета-лактамные антибиотики, обладающие пространственным сходством с субстратом реакции D-аланил-D-аланином, образуют ковалентную ацильную связь с активным центром транспептидазы и необратимо ингибируют ее. Поэтому транспептидазы и подобные им ферменты, участвующие в транспептидировании, называют также  пенициллинсвязывающими белками.

Почти все антибиотики, подавляющие синтез клеточной стенки бактерий, бактерицидны — они вызывают гибель бактерий в результате осмотического лизиса. В присутствии таких антибиотиков аутолиз клеточной стенки не уравновешивается процессами восстановления, и стенка разрушается эндогенными  пептидогликангидролазами

Источник: https://students-library.com/library/read/6460-antibiotiki-podavlausie-sintez-kletocnoj-stenki-bakterij

Ингибиторы синтеза клеточной стенки микроорганизмов

Главная / Рациональная антибиотикотерапия / Общая характеристика антибиотиков / Ингибиторы синтеза клеточной стенки микроорганизмов

Приведенная ниже классификация антибиотических веществ по механизму действия в целом соответствует мнению большинства специалистов в этой области, однако в отдельных случаях она не лишена элемента условности.

Так, например, представитель ß-лактамных антибиотиков полусинтетический пенициллин мециллинам, помимо действия на синтез пептидогликана клеточной стенки, по некоторым данным, нарушает и целостность внешней мембраны у грамотрицательных бактерий.

Более детальная дифференциация антибиотиков по механизму действия может быть представлена для каждой группы антибиотиков и рассматривается ниже при их описании. 

Специфические ингибиторы синтеза клеточной стенки микроорганизмов

  • Беталактамные антибиотики — пенициллины и цефалоспорины.
  • Циклосерин.
  • Антибиотики группы ванкомицина.

Антибиотики, нарушающие молекулярную организацию и функции клеточных мембран

Антибиотики, подавляющие синтез белка на уровне рибосом

  • Хлорамфеникол (левомицетин).
  • Макролиды (эритромицин, олеандомицин).
  • Линкомицин.
  • Фузидин.
  • Тетрациклины.
  • Аминогликозиды.

Ингибиторы синтеза РНК на уровне РНК-полимеразы

Ингибиторы синтеза РНК на уровне ДНК-матрицы

  • Акгиномицины.
  • Антибиотики группы ауреоловой кислоты.

Ингибиторы синтеза ДНК на уровне ДНК-матрицы

  • Митомицин С.
  • Антрациклины.
  • Стрептонигрин (брунеомицин).
  • Блеомицины.

Для некоторых антибиотиков (новобиоцин, гризеофульвин) конкретные механизмы действия недостаточно выяснены.

Так, новобиоцин оказывает тормозящее действие на синтез клеточной стенки бактерий и нарушает метаболизм нуклеиновых кислот.

Гризеофульвин вызывает морфологические изменения клеточной стенки грибов и нарушает синтез нуклеиновых кислот. Однако первичные мишени антимикробного действия новобиоцина и гризеофульвина не установлены.

Основу клеточной стенки бактерий составляет специфический и сложный гетерополимер — пептидогликан (мукопептид, муреин).

Пептидогликан свойствен лишь микроорганизмам и представляет собой гигантскую молекулу, охватывающую жесткой сетью всю клетку.

Защитный слой пептидогликана располагается над цитоплазматической (внутренней) мембраной микробной клетки. У грамотрицательных бактерий над пептидогликаном находится липополисахаридная внешняя мембрана.

Многие антибиотики — природные и полусинтетические пенициллины и цефалоспорины, циклосерин, ванкомицин и др.— являются селективными ингибиторами синтеза мукопептидов клеточной стенки бактерий, находящихся в стадии размножения. Мишенями действия пенициллинов являются энзимы клеточной стенки микроорганизмов.

Связывание энзимов с антибиотиком сопровождается образованием брешей в мукопептидной оболочке, через которые поступают в клетку молекулы антибиотика.

Поврежденные мукопептиды разрушаются аутолитическими ферментами, что приводит к образованию протопластов — клеток, лишенных оболочек, или сферопластов — клеток с дефектной оболочкой.

Один из энзимов — эндопептидаза — обладает трансферазной активностью (идентичен транспептидазе, впервые описанной как мишень действия пенициллина); другой специфический энзим — гликозидаза, участвующий в синтезе полисахаридных цепей клеточной стенки. При взаимодействии пенициллина с его мишенями происходит расщепление беталактамного кольца и образование комплекса пенициллоил — фермент.

«Рациональная антибиотикотерапия»,

С.М.Навашин, И.П.Фомина

Смотрите также на тему:

Источник: https://www.medvyvod.ru/antibiotikoterapiya/obschaya_harakteristika/1689.html

Почему антибиотики бессильны против вирусов?

То, что антибиотики неэффективны против вирусов, уже давно стало азбучной истиной. Однако, как показывают опросы, 46% наших соотечественников полагают, что вирусы можно убить антибиотиками.

Причина заблуждения, вероятно, кроется в том, что антибиотики прописывают при инфекционных заболеваниях, а инфекции привычно ассоциируются с бактериями или вирусами. Хотя стоит заметить, что одними лишь бактериями и вирусами набор инфекционных агентов не ограничивается.

Вообще, антибиотиков великое множество, классифицировать их можно по разным медицинским и биологическим критериям: химическому строению, эффективности, способности действовать на разные виды бактерий или только на какую-то узкую группу (например, антибиотики, нацеленные на возбудителя туберкулёза).

Но главное объединяющее их свойство — способность подавлять рост микроорганизмов и вызывать их гибель. Чтобы понять, почему антибиотики не действуют на вирусы, надо разобраться, как они работают.

На клеточную стенку действуют бета-лактамные антибиотики, к которым относятся пенициллины, цефалоспорины и другие; полимиксины нарушают целостность мембраны бактериальной клетки.

Клеточная стенка бактерий состоит из гетерополимерных нитей, сшитых между собой короткими пептидными мостиками.

Действие пенициллина на кишечную палочку: из-за пенициллина растущая бактериальная клетка не может достраивать клеточную стенку, которая перестаёт покрывать клетку целиком, в результате чего клеточная мембрана начинает выпячиваться и рваться.

У многих вирусов кроме генома в виде ДНК или РНК и белкового капсида есть ещё дополнительная оболочка, или суперкапсид, которая состоит из фрагментов хозяйских клеточных мембран (фосфолипидов и белков) и удерживает на себе вирусные гликопротеины.

Какие слабые места антибиотики находят у бактерий?

Во-первых, клеточная стенка. Любой клетке нужна какая-то граница между ней и внешней средой — без этого и клетки-то никакой не будет. Обычно границей служит плазматическая мембрана — двойной слой липидов с белками, которые плавают в этой полужидкой поверхности.

Но бактерии пошли дальше: они кроме клеточной мембраны создали так называемую клеточную стенку — довольно мощное сооружение и к тому же весьма сложное по химическому строению. Для формирования клеточной стенки бактерии используют ряд ферментов, и если этот процесс нарушить, бактерия с большой вероятностью погибнет.

(Клеточная стенка есть также у грибов, водорослей и высших растений, но у них она создаётся на другой химической основе.)

Во-вторых, бактериям, как и всем живым существам, надо размножаться, а для этого нужно озаботиться второй копией

наследственной молекулы ДНК, которую можно было бы отдать клетке-потомку. Над этой второй копией работают специальные белки, отвечающие за репликацию, то есть за удвоение ДНК.

Для синтеза ДНК нужен «стройматериал», то есть азотистые основания, из которых ДНК состоит и которые складываются в ней в «слова» генетического кода.

Синтезом оснований-кирпичиков опять же занимаются специализированные белки.

Третья мишень антибиотиков — это трансляция, или биосинтез белка. Известно, что ДНК хорошо подходит для хранения наследственной информации, но вот считывать с неё информацию для синтеза белка не очень удобно. Поэтому между ДНК и белками существует посредник — матричная РНК.

Сначала с ДНК снимается РНК-копия, — этот процесс называется транскрипцией, а потом на РНК происходит синтез белка.

Выполняют его рибосомы, представляющие собой сложные и большие комплексы из белков и специальных молекул РНК, а также ряд белков, помогающих рибосомам справляться с их задачей.

Большинство антибиотиков в борьбе с бактериями «атакуют» одну из этих трёх главных мишеней — клеточную стенку, синтез ДНК и синтез белка в бактериях.

Например, клеточная стенка бактерий — мишень для хорошо известного антибиотика пенициллина: он блокирует ферменты, с помощью которых бактерия осуществляет строительство своей внешней оболочки. Если применить эритромицин, гентамицин или тетрациклин, то бактерии перестанут синтезировать белки.

Читайте также:  Антибиотики при зеленых соплях у детей

Эти антибиотики связываются с рибосомами так, что трансляция прекращается (хотя конкретные способы подействовать на рибосому и синтез белка у эритромицина, гентамицина и тетрациклина разные).

Хинолоны подавляют работу бактериальных белков, которые нужны для распутывания нитей ДНК; без этого ДНК невозможно правильно копировать (или реплицировать), а ошибки копирования ведут к гибели бактерий.

Сульфаниламидные препараты нарушают синтез веществ, необходимых для производства нуклеотидов, из которых состоит ДНК, так что бактерии опять-таки лишаются возможности воспроизводить свой геном.

Почему же антибиотики не действуют на вирусы?

Во-первых, вспомним, что вирус — это, грубо говоря, белковая капсула с нуклеиновой кислотой внутри. Она несёт в себе наследственную информацию в виде нескольких генов, которые защищены от внешней среды белками вирусной оболочки.

Во-вторых, для размножения вирусы выбрали особенную стратегию. Каждый из них стремится создать как можно больше новых вирусных частиц, которые будут снабжены копиями генетической молекулы «родительской» частицы.

Словосочетание «генетическая молекула» использовано не случайно, так как среди молекул-хранительниц генетического материала у вирусов можно найти не только ДНК, но и РНК, причём и та и другая могут быть у них как одно-, так и двухцепочечными.

Но так или иначе вирусам, как и бактериям, как и вообще всем живым существам, для начала нужно свою генетическую молекулу размножить. Вот для этого вирус пробирается в клетку.

Что он там делает? Заставляет молекулярную машину клетки обслуживать его, вируса, генетический материал. То есть клеточные молекулы и надмолекулярные комплексы, все эти рибосомы, ферменты синтеза нуклеиновых кислот и т. д. начинают копировать вирусный геном и синтезировать вирусные белки.

Не будем вдаваться в подробности, как именно разные вирусы проникают в клетку, что за процессы происходят с их ДНК или РНК и как идёт сборка вирусных частиц. Важно, что вирусы зависят от клеточных молекулярных машин и особенно — от белоксинтезирующего «конвейера».

Бактерии, даже если проникают в клетку, свои белки и нуклеиновые кислоты синтезируют себе сами.

Что произойдёт, если к клеткам с вирусной инфекцией добавить, например, антибиотик, прерывающий процесс образования клеточной стенки? Никакой клеточной стенки у вирусов нет. И потому антибиотик, который действует на синтез клеточной стенки, ничего вирусу не сделает.

Ну а если добавить антибиотик, который подавляет процесс биосинтеза белка? Всё равно не подействует, потому что антибиотик будет искать бактериальную рибосому, а в животной клетке (в том числе человеческой) такой нет, у неё рибосома другая.

В том, что белки и белковые комплексы, которые выполняют одни и те же функции, у разных организмов различаются по структуре, ничего необычного нет. Живые организмы должны синтезировать белок, синтезировать РНК, реплицировать свою ДНК, избавляться от мутаций.

Эти процессы идут у всех трёх доменов жизни: у архей, у бактерий и у эукариот (к которым относятся и животные, и растения, и грибы), — и задействованы в них схожие молекулы и надмолекулярные комплексы. Схожие — но не одинаковые. Например, рибосомы бактерий отличаются по структуре от рибосом эукариот из-за того, что рибосомная РНК немного по-разному выглядит у тех и других.

Такая непохожесть и мешает антибактериальным антибиотикам влиять на молекулярные механизмы эукариот. Это можно сравнить с разными моделями автомобилей: любой из них довезёт вас до места, но конструкция двигателя может у них отличаться и запчасти к ним нужны разные. В случае с рибосомами таких различий достаточно, чтобы антибиотики смогли подействовать только на бактерию.

До какой степени может проявляться специализация антибиотиков? Вообще, антибиотики изначально — это вовсе не искусственные вещества, созданные химиками. Антибиотики — это химическое оружие, которое грибы и бактерии издавна используют друг против друга, чтобы избавляться от конкурентов, претендующих на те же ресурсы окружающей среды.

Лишь потом к ним добавились соединения вроде вышеупомянутых сульфаниламидов и хинолонов. Знаменитый пенициллин получили когда-то из грибов рода пенициллиум, а бактерии стрептомицеты синтезируют целый спектр антибиотиков как против бактерий, так и против других грибов.

Причём стрептомицеты до сих пор служат источником новых лекарств: не так давно исследователи из Северо-Восточного университета (США) сообщили о новой группе антибиотиков, которые были получены из бактерий Streptomyces hawaiensi, — эти новые средства действуют даже на те бактериальные клетки, которые находятся в состоянии покоя и потому не чувствуют действия обычных лекарств. Грибам и бактериям приходится воевать с каким-то определённым противником, кроме того, необходимо, чтобы их химическое оружие было безопасно для того, кто его использует. Потому-то среди антибиотиков одни обладают самой широкой антимикробной активностью, а другие срабатывают лишь против отдельных групп микроорганизмов, пусть и довольно обширных (как, например, полимиксины, действующие только на грамотрицательные бактерии).

Более того, существуют антибиотики, которые вредят именно эукариотическим клеткам, но совершенно безвредны для бактерий.

Например, стрептомицеты синтезируют циклогексимид, который подавляет работу исключительно эукариотических рибосом, и они же производят антибиотики, подавляющие рост раковых клеток.

Механизм действия этих противораковых средств может быть разным: они могут встраиваться в клеточную ДНК и мешать синтезировать РНК и новые молекулы ДНК, могут ингибировать работу ферментов, работающих с ДНК, и т. д., — но эффект от них один: раковая клетка перестаёт делиться и погибает.

Возникает вопрос: если вирусы пользуются клеточными молекулярными машинами, то нельзя ли избавиться от вирусов, подействовав на молекулярные процессы в заражённых ими клетках? Но тогда нужно быть уверенными в том, что лекарство попадёт именно в заражённую клетку и минует здоровую.

А эта задача весьма нетривиальна: надо научить лекарство отличать заражённые клетки от незаражённых.

Похожую проблему пытаются решить (и небезуспешно) в отношении опухолевых клеток: хитроумные технологии, в том числе и с приставкой нано-, разрабатываются для того, чтобы обеспечить адресную доставку лекарств именно в опухоль.

Что же до вирусов, то с ними лучше бороться, используя специфические особенности их биологии.

Вирусу можно помешать собраться в частицу, или, например, помешать выйти наружу и тем самым предотвратить заражение соседних клеток (таков механизм работы противовирусного средства занамивира), или, наоборот, помешать ему высвободить свой генетический материал в клеточную цитоплазму (так работает римантадин), или вообще запретить ему взаимодействовать с клеткой.

Вирусы не во всём полагаются на клеточные ферменты. Для синтеза ДНК или РНК они используют собственные белки-полимеразы, которые отличаются от клеточных белков и которые зашифрованы в вирусном геноме. Кроме того, такие вирусные белки могут входить в состав готовой вирусной частицы.

И антивирусное вещество может действовать как раз на такие сугубо вирусные белки: например, ацикловир подавляет работу ДНК-полимеразы вируса герпеса. Этот фермент строит молекулу ДНК из молекул-мономеров нуклеотидов, и без него вирус не может умножить свою ДНК. Ацикловир так модифицирует молекулы-мономеры, что они выводят из строя ДНК-полимеразу.

Многие РНК-вирусы, в том числе и вирус СПИДа, приходят в клетку со своей РНК и первым делом синтезируют на данной РНК молекулу ДНК, для чего опять же нужен особый белок, называемый обратной транскриптазой. И ряд противовирусных препаратов помогают ослабить вирусную инфекцию, действуя именно на этот специфический белок. На клеточные же молекулы такие противовирусные лекарства не действуют.

Ну и наконец, избавить организм от вируса можно, просто активировав иммунитет, который достаточно эффективно опознаёт вирусы и заражённые вирусами клетки.

Итак, антибактериальные антибиотики не помогут нам против вирусов просто потому, что вирусы организованы в принципе иначе, чем бактерии.

Мы не можем подействовать ни на вирусную клеточную стенку, ни на рибосомы, потому что у вирусов ни того, ни другого нет.

Мы можем лишь подавить работу некоторых вирусных белков и прервать специфические процессы в жизненном цикле вирусов, однако для этого нужны особые вещества, действующие иначе, нежели антибактериальные антибиотики.

Однако надо сделать пару уточнений. На самом деле бывает, что при вирусной простуде врачи рекомендуют принимать антибиотики, но это связано с тем, что вирусная инфекция осложняется бактериальной, с теми же симптомами.

Так что антибиотики тут нужны, но не для того, чтобы избавиться от вирусов, а для того, чтобы избавиться от «зашедших на огонёк» бактерий. Кроме того, говоря об антибиотиках, подавляющих биосинтез белка, мы упирали на то, что такие антибиотики могут взаимодействовать только с бактериальными молекулярными машинами.

Но, например, тетрациклиновые антибиотики активно подавляют работу и эукариотических рибосом тоже. Однако на наши клетки тетрациклины всё равно не действуют — из-за того, что не могут проникнуть сквозь клеточную мембрану (хотя бактериальная мембрана и клеточная стенка для них вполне проницаемы).

Отдельные антибиотики, например пуромицин, действуют не только на бактерии, но и на инфекционных амёб, червей-паразитов и некоторые опухолевые клетки.

Очевидно, различия между бактериальными и эукариотическими молекулами и молекулярными комплексами, участвующими в одних и тех же процессах, для ряда антибиотиков не так уж велики и они могут действовать как на те, так и на другие.

Однако это вовсе не значит, что такие вещества могут быть эффективны против вирусов.

Тут важно понять, что в случае с вирусами складываются воедино сразу несколько особенностей их биологии и антибиотик против такой суммы обстоятельств оказывается бессилен.

И второе уточнение, вытекающее из первого: может ли такая «неразборчивость» или, лучше сказать, широкая специализация антибиотиков лежать в основе побочных эффектов от них? На самом деле такие эффекты возникают не столько оттого, что антибиотики действуют на человека так же, как на бактерии, сколько оттого, что у антибиотиков обнаруживаются новые, неожиданные свойства, с их основной работой никак не связанные. Например, пенициллин и некоторые другие бета-лактамные антибиотики плохо действует на нейроны — а всё потому, что они похожи на молекулу ГАМК (гамма-аминомасляной кислоты), одного из основных нейромедиаторов. Нейромедиа-торы нужны для связи между нейронами, и добавка антибиотиков может привести к нежелательным эффектам, как если бы в нервной системе образовался избыток этих самых нейромедиаторов. В частности, некоторые из антибиотиков, как считается, могут провоцировать эпилептические припадки. Вообще, очень многие антибиотики взаимодействуют с нервными клетками, и часто такое взаимодействие приводит к негативному эффекту. И одними лишь нервными клетками дело не ограничивается: антибиотик неомицин, например, если попадает в кровь, сильно вредит почкам (к счастью, он почти не всасывается из желудочно-кишечного тракта, так что при приёме перорально, то есть через рот, не наносит никакого ущерба, кроме как кишечным бактериям).

Впрочем, главный побочный эффект от антибиотиков связан как раз с тем, что они вредят мирной желудочно-кишечной микрофлоре. Антибиотики обычно не различают, кто перед ними, мирный симбионт или патогенная бактерия, и убивают всех, кто попадётся на пути.

А ведь роль кишечных бактерий трудно переоценить: без них мы бы с трудом переваривали пищу, они поддерживают здоровый обмен веществ, помогают в настройке иммунитета и делают много чего ещё, — функции кишечной микрофлоры исследователи изучают до сих пор.

Можно себе представить, как чувствует себя организм, лишённый компаньонов-сожителей из-за лекарственной атаки.

Поэтому часто, прописывая сильный антибиотик или интенсивный антибиотический курс, врачи заодно рекомендуют принимать препараты, которые поддерживают нормальную микрофлору в пищеварительном тракте пациента.

Детальное описание иллюстрации

Источник: https://www.nkj.ru/archive/articles/24629/

Ссылка на основную публикацию