Классификация антибиотиков по механизму действия

Классификация антибиотиков по механизму действия и химическому строению :: SYL.ru

Классификация антибиотиков по механизму действия

Антибиотики — это органические вещества, имеющие природное или полусинтетическое происхождение, способные подавлять рост других живых клеток, чаще простейших и прокариотических.

Эти препараты назначаются при лечении широкого спектра заболеваний, и для каждого отдельно взятого случая требуется подобрать самый действенный медикамент.

Классификация антибиотиков дает представление о том, какими бывают эти вещества, чем различаются и на каких возбудителей заболеваний они воздействуют.

Происхождение и воздействие

Антибиотики микробного, растительного или животного происхождения, подавляющие рост или вызывающие гибель некоторых микроорганизмов, чаще всего являются продуктом деятельности актиномицетов. В таком случае в наименовании действующего вещества присутствует суффикс «мицин».

В других случаях антибиотики продуцируются немицелиальными бактериями. В качестве лекарственных средств их применяют потому, что при тотальном воздействии на простейшие клетки они не затрагивают функций всего организма либо наносят незначительные повреждения.

Часто такие препараты назначают во время лечения онкологических заболеваний в качестве противоопухолевых (цитостатических) медикаментов.

Обычно этими средствами не лечат вирусные заболевания, такие как грипп, ветряная оспа, корь, краснуха, гепатит и другие, но отдельный ряд тетрациклинов действует на них комплексно.

Классификация антибиотиков по химическому строению

Сгруппировать их по этому принципу было предложено российскими учеными-химиками А.С. Хохловым и М.М. Шемякиным. Данная классификация антибиотиков основывается на химическом составе их молекул и включает самые многочисленные категории:

  • Бета-лактамные подразделяются на пенициллины, выработанные плесневым грибком (действующие вещества — бензилпенициллин, феноксиметил-пенициллин, оксациллин, клоксациллин, флуклоксациллин, амдиноциллин, ацидоциллин, амоксициллин, ампициллин, пивампициллин, карбенициллин, азлоциллин, мезлоциллин, пиперациллин), и цефалоспорины (действующие вещества — цефалоридин, цефазолин, цефамандол, цефуроксим, цефотаксим, цефтазидим, цефпиром, цефепим).
  • Макролиды, бактериостатические антибиотики со сложной химической структурой (действующие вещества — эритромицин, олеандомицин, спирамицин, рокситромицин, кларитромицин, азитромицин).
  • Тетрациклины — ими лечат болезни дыхательных путей и мочевыводящей системы, а также тяжелые заболевания вроде сибирской язвы, бруцеллеза, туляремии (действующие вещества — тетрациклин, окситетрациклин, хлортетрациклин, метациклин, доксициклин, миноциклин, морфоциклин).
  • Аминогликозиды, бактерицидные антибиотики с высокой степенью токсичности (действующие вещества — стрептомицин, мономицин, канамицин, гентамицин, тобрамицин, сизомицин, амикацин, нетильмицин, изепамицин). Применяются для лечения сложных инфекций, заражения крови или перитонита.
  • Левомицетины имеют ограниченное применение по причине вероятного воздействия на костный мозг.
  • Гликопептидные антибиотики в отношении стрептококков, стафилококков и энтерококков действуют бактериостатически, в остальных случаях — бактерицидно, нарушая синтез стенок бактериальной клетки (действующие вещества — ванкомицин, тейкопланин).
  • Линкозамиды являются ингибиторами образования белка (действующие вещества — линкомицин, клиндамицин).

Отдельно выделенные препараты

Также классификация антибиотиков включает:

  • Противотуберкулезные средства (действующие вещества — фтивазид, изониазид, метазид, салюзид, протионамид, этионамид).
  • Противогрибковые препараты.
  • Противолепрозные средства, действующими веществами в которых являются диуцифон, солюсульфон, диафенилсульфон.
  • Антибиотики разных групп (вещества гелиомицин, грамицидин, полимиксина В и М сульфат, фузидин-натрий, ристомицина сульфат, рифамицин).

Влияние на клетки организма

Классификация антибиотиков по механизму действия выглядит следующим образом:

  • ингибиторы, парализующие синтез клеточной стенки;
  • средства нарушения молекулярной организации и функции клеточных мембран;
  • антибиотики, подавляющие синтез нуклеиновых кислот и белка, в том числе на уровне рибосом.

В зависимости от причины заболевания, то есть бактерий, вызвавших его, только врач назначает подходящее по степени воздействия средство. А классификация антибиотиков позволяет выбрать самый эффективный препарат.

Источник: https://www.syl.ru/article/140895/mod_klassifikatsiya-antibiotikov-po-mehanizmu-deystviya-i-himicheskomu-stroeniyu

Классификация антибиотиков по группам — список по механизму действия, составу или поколению — Информационный портал о здоровье

Человеческий организм каждый день подвергается атаке множества микробов, которые стараются поселиться и развиваться за счет внутренних ресурсов тела.

Иммунитет, как правило справляется с ними, но иногда устойчивость у микроорганизмов высокая и приходится принимать лекарства для борьбы с ними.

Существуют разные группы антибиотиков, которые имеют определенный спектр воздействия, относятся к разным поколениям, но все виды этого препарата эффективно убивают патологические микроорганизмы. Как и все мощные медикаменты, это средство имеет свои побочные эффекты.

Что такое антибиотик

Это группа препаратов, которые обладают способностью блокировать синтез белков и тем самым угнетать размножение, рост живых клеток.

Все виды антибиотиков применяются для лечения инфекционных процессов, которые вызваны разными штаммами бактерий: стафилококк, стрептококк, менингококк. Впервые медикамент был разработан в 1928 Александром Флемингом.

Назначают антибиотики некоторых групп при лечении онкологических патология в составе комбинированной химиотерапии. В современной терминологии этот вид медикамента называют чаще антибактериальными препаратами.

Классификация антибиотиков по механизму действия

Первыми лекарственными препаратами этого вида стали медикаменты на основе пенициллина. Существует классификация антибиотиков по группам и по механизму действия.

Некоторые из препаратов имею узкую направленность, другие – широкий спектр действия. Этот параметр определяет насколько сильно будет влиять лекарство на здоровье человека (как в положительном, так и отрицательном плане).

Медикаменты помогают справиться или снизить летальность таких серьезных заболеваний:

  • сепсис;
  • гангрена;
  • менингит;
  • пневмония;
  • сифилис.

Бактерицидные

Это один из видов из классификации антимикробных средств по фармакологическому действия. Бактерицидные антибиотики являются лекарственный препаратом, которые вызывают лизис, гибель микроорганизмов. Медикамент ингибирует синтез мембран, подавляют продукцию компонентов ДНК. Этими свойствами обладают следующие группы антибиотиков:

  • карбапенемы;
  • пенициллины;
  • фторхинолоны;
  • гликопептиды;
  • монобактамы;
  • фосфомицин.

Бактериостатические

Действие данной группы медикаментов направлено на угнетение синтеза белков клетками микроорганизмов, что не дает им дальше размножаться и развиваться. Результатом действия лекарственного средства становится ограничение дальнейшего развития патологического процесса. Данное воздействие характерно для следующих групп антибиотиков:

  • линкозамины;
  • макролиды;
  • аминогликозиды.

Классификация антибиотиков по химическому составу

Основное разделение препаратов проводится по химической структуре. Каждый из них основывается на разном активном веществе.

Такое разделение помогает бороться целенаправленно с определенным типом микробов или оказывать широкий спектр действия на большое количество разновидностей.

Это же не дает бактериям выработать резистентность (сопротивление, невосприимчивость) к конкретному виду медикамента. Ниже описаны основные виды антибиотиков.

Пенициллины

Это самая первая группа, которая была создана человеком. Антибиотики группы пенициллинов (penicillium) имеет широкий спектр воздействия на микроорганизмы. Внутри группы существует дополнительное деление на:

  • природные пенициллиновые средства – производятся грибами в нормальных условиях (феноксиметилпенициллин, бензилпенициллин);
  • полусинтетические пенициллины, обладают большей стойкостью против пенициллиназ, что существенно расширяет спектр действия антибиотика (медикаменты метициллина, оксациллина);
  • расширенное действие – препараты ампициллина, амоксициллина;
  • лекарства с широким спектром действия – медикамент азлоциллина, мезлоциллина.

Для того, чтобы снизить сопротивляемость бактерий этому виду антибиотиков, добавляют ингибиторы пенициллиназ: сульбактам, тазобактам, клавулановую кислоту. Яркими примерами таких медикаментов являются: Тазоцин, Аугментин, Тазробида. Назначают средства при следующих патологиях:

  • инфекции дыхательной системы: пневмония, синусит, бронхит, ларингит, фарингит;
  • мочеполовой: уретрит, цистит, гонорея, простатит;
  • пищеварительной: дизентерия, холецистит;
  • сифилис.

Цефалоспорины

Бактерицидное свойство данной группы обладает широким спектром действия. Выделяют следующие поколения цефлафоспоринов:

  • I-е, препараты цефрадина, цефалексина, цефазолина;
  • II-е, средства с цефаклором, цефуроксимом, цефокситином, цефотиамом;
  • III-е, медикаменты цефтазидима, цефотаксима,цефоперазона, цефтриаксона, цефодизима;
  • IV-е, средства с цефпиромом, цефепимом;
  • V-е, медикаменты фетобипрола, цефтаролина, фетолозана.

Существует большая часть противобактериальных медикаментов этой группы только в форме инъекций, поэтому применяют их чаще в поликлиниках. Цефалоспорины – самый популярный вид антибиотиков при стационарном лечении. Назначают этот класс противобактериальных средств при:

  • пиелонефрите;
  • генерализации инфекции;
  • воспалении мягких тканей, костей;
  • менингите;
  • пневмонии;
  • лимфангите.

Макролиды

Это группа антибактериальных препаратов имеют в качестве основания макроциклическое лактонное кольцо.

Макролидные антибиотики оказывают бактериостатическое дивите против грамположительных бактерий, мембранных и внутриклеточных паразитов. Макролидов в тканях намного больше, чем в плазме крови пациентам.

Средства данного вида имеют низкую токсичность, при необходимости их можно давать ребенку, беременной девушке. Делят макролитики на следующие типы:

  1. Природные. Были синтезированы впервые в 60-х годах XX века, к ним относятся средства спирамицина, эритромицина, мидекамицина, джозамицина.
  2. Пролекарства, активная форма принимается после метаболизма, к примеру, тролеандомицин.
  3. Полусинтетические. Это средства кларитромицина, телитромицина, азитромицина, диритромицина.

Тетрациклины

Этот вид был создан во второй половине XX века. Антибиотики тетрациклиновой группы обладают противомикробным действием против большого количества штаммов микробной флоры. При высокой концентрации проявляется бактерицидный эффект.

Особенность тетрациклинов – способность скапливаться в эмали зубов, костной ткани. Это помогает при лечении хронического остеомиелита, но и нарушает развитие скелета у маленьких детей. Данная группа запрещена для приема беременным девушкам, детям до 12 лет.

Данные антибактериальные медикаменты представлены следующими препаратами:

  • Окситетрациклин;
  • Тигециклин;
  • Доксициклин;
  • Миноциклин.

К противопоказаниям относят гиперчувствительность к компонентам, хронические патологии печени, порфирию. Показанием к применению выступают следующие патологии:

  • болезнь Лайма;
  • кишечные патологии;
  • лептоспироз;
  • бруцеллез;
  • гонококковые инфекции;
  • риккетсиоз;
  • трахома;
  • актиномикоз;
  • туляремия.

Аминогликозиды

Активное применение данного ряда медикаментов проводится при лечении инфекций, которые вызывали грамотрицательная флора. Антибиотики оказывают бактерицидное действие.

Препараты показывают высокую эффективность, которая не связана с показателем активности иммунитета пациента, делает эти медикаменты незаменимыми при его ослаблении и нейтропении.

Существуют следующие поколения данных антибактериальных средств:

  1. Препараты канамицина, неомицина, левомицетина, стрептомицина относятся к первому поколению.
  2. Во второе входят средства с гентамицином, тобрамицином.
  3. К третьему относят препараты амикацина.
  4. Четвертое поколение представлено изепамицином.

Показаниями для применения данной группы медикаментов становятся следующие патологии:

  • сепсис;
  • инфекции дыхательных путей;
  • цистит;
  • перитонит;
  • эндокардит;
  • менингит;
  • остеомиелит.

Фторхинолоны

Одна из самых больших групп антибактериальных средств, имеют широкий бактерицидное действие на патогенные микроорганизмы. Все медикаменты – походные налидиксовой кислоты. Использовать активно фторхинолоны начали в 7-х года, существует классификация по поколениям:

  • медикаменты оксолиновой, налидиксовой кислоты;
  • средства с ципрофлоксацином, офлоксацином, пефлоксацином, норфлоксацином;
  • препараты левофлоксацина;
  • лекарства с моксифлоксацином, гатифлоксацином, гемифлоксацином.

Последний вид получил название «респираторный», что связано с активностью против микрофлоры, выступающей, как правило, причиной развития пневмонии. Используют медикаменты данной группы для терапии:

  • бронхитов;
  • синуситов;
  • гонореи;
  • кишечных инфекций;
  • туберкулеза;
  • сепсиса;
  • менингита;
  • простатита.

Видео

Классификация антибиотиков по группам — список по механизму действия, составу или поколению — все о лекарствах и здоровье на Zdravie4ever.ru

Источник: https://zdravie4ever.ru/klassifikaciia-antibiotikov-po-gryppam-spisok-po-mehanizmy-deistviia-sostavy-ili-pokoleniu/

АНТИБИОТИКИ. КЛАССИФИКАЦИЯ, МЕХАНИЗМ ДЕЙСТВИЯ, ПОБОЧНЫЕ ЭФФЕКТЫ

Антибиотики (от греч. anti—против, bios—жизнь) —это химические соединения биологического происхождения, оказывающие избирательное повреждающее или губительное действие на микроорганизмы.

  Антибиотики,   применяемые   в   медицинской   практике,  продуцируются актиномицетами (лучистыми грибами), плесневыми грибами, а также некоторыми бактериями.

К этой группе препаратов относят также синтетические аналоги и производные природных антибиотиков.

Классификация Существуют антибиотики с антибактериальным, противогрибковым и противоопухолевым действием.

В настоящем разделе будут рассмотрены антибиотики, влияющие преимущественно на бактерии. Они представлены следующими группами:

По спектру антимикробного действия антибиотики отличаются довольно существенно. Одни влияют преимущественно на грамположительные бактерии (биосинтетические пенициллины, макролиды), другие — в основном на грамотрицательные бактерии (например, полимиксины).

Ряд антибиотиков обладает широким спектром действия (тетрациклины, левомицетин и др.), включающим грамположительные и грамотрицательные бактерии, риккетсии, хламидии (так называемые крупные вирусы) и ряд других возбудителей инфекций (табл. 27.1; рис. 27.1).

Механизм действия

Таблица 27.1. Основной механнзм н характер антнмнкробного действия антнбиотиков

Спектр действия Антибиотики Основной механизм антимикробного действия Преимущественный характер антимикробного действия
Антибиотики, влияю­щие преимуществен­но на грамположи-тельные бактерии Препараты бензилпеницил-лина Полусинтетические пеницил-лины ЭритромицинОлеандомицин Угнетение синтеза  клеточ­ной стенки То жеУгнетение синтеза белка То же БактерицидныйБактериостатичес-кий
Антибиотики, влияю­щие на грамотрица-тельные бактерии Полимиксины Нарушение   проницаемости цитоплазматической     мем­браны Бактерицидный
Антибиотики ши­рокого спектра дей­ствия Тетрациклины Левомицетин Стрептомицин Неомицин Мономицин Канамицин Ампициллин Имипенем Цефалоспорины Рифампицин Угнетение синтеза белка То жеУгнетение синтеза клеточ­ной стенки То же Угнетение синтеза РНК Бактериостатический Бактерицидный

Рис. 27.1. Примеры антибиотиков с разными спектрами антибактериального действия.

Рис. 27.2. Основные механизмы антимикробного действия антибиотиков.

Антибиотики воздействуют на микроорганизмы, либо подавляя их размножение (бактериостатический эффект), либо вызывая их гибель (бактерицидный эффект).

Известны следующие основные механизмы антимикробного действия антибиотиков (рис. 27.2):

1)  нарушение синтеза клеточной стенки бактерий (по такому принципу действуют пенициллины, цефалоспорины);

2)  нарушение проницаемости цитоплазматической мембраны (например, полимиксинами);

3)  нарушение внутриклеточного синтеза белка (так действуют тетрациклины, левомицетин, стрептомицин и др.);

4)  нарушение синтеза РНК (рифамницин).

Высокая избирательность действия антибиотиков на микроорганизмы при их малой токсичности в отношении макроорганизма, очевидно, объясняется особенностями структурной и функциональной организации микробных клеток. Действительно, клеточная стенка бактерий по химическому составу принципиально отличается от мембран клеток млекопитающих.

Читайте также:  Острый серозный средний отит прием антибиотика

Состоит клеточная стенка бактерий из мукопептида муреина (содержит N-ацетил-глюкозамин, N-ацетил-мурамовую кислоту и пептидные цепочки, включающие некоторые L- и D-аминокислоты). В связи с этим вещества, нарушающие ее синтез (например, пенициллины), обладают выраженным антимикробным действием и практически не влияют на клетки макроорганизма.

Определенную роль, возможно, играет неодинаковое количество мембран, окружающих те 1 активные центры, с которыми могут взаимодействовать антибиотики. Так, в отличие от микроорганизмов у клеток млекопитающих, помимо общей плазматической мембраны, все внутриклеточные органеллы имеют свои, иногда двойные, мембраны.

По-видимому, важное значение принадлежит отличиям в химическом составе отдельных клеточных компонентов. Следует учитывать также существенные различия в темпе роста и размножения клеток макро- и микроорганизмов, а следовательно, и скорости синтеза их структурных материалов.

В целом проблема избирательности действия антибиотиков, как и других антимикробных средств, нуждается в дальнейших исследованиях.

Таблица 27.2. Возможные неблагоприятные влияния ряда антибиотиков

1 Отмечается в основном при применении цефалоридина.

В процессе использования антибиотиков к ним может развиваться устойчивость микроорганизмов. Особенно быстро она возникает по отношению к стрептомицину, олеандомицину, рифампицину, относительно медленно — к пенициллинам, тетрациклинам и левомицетину, редко—к полимиксинам.

Возможна так называемая перекрестная устойчивость, которая относится не только к применяемому препарату, но и к другим антибиотикам, сходным с ним по химическому строению (например, ко всем тетрациклинам).

Вероятность развития устойчивости уменьшается, если дозы и длительность введения антибиотиков оптимальны, а также при рациональной комбинации антибиотиков.

Если к основному антибиотику возникла устойчивость, его следует заменить другим, «резервным» (Резервные антибиотики по одному или по ряду свойств уступают основным антибиотикам (обладают меньшей активностью либо более выраженными побочными эффектами, большей токсичностью или быстрым развитием резистентности к ним микроорганизмов). Поэтому их назначают лишь при устойчивости микроорганизмов к основным антибиотикам.), антибиотиком.

Побочное действие Хотя антибиотики и характеризуются высокой избирательностью действия, тем не менее они оказывают и целый ряд неблагоприятных влияний на макроорганизм.

Так, при использовании антибиотиков нередко возникают аллергические реакции немедленного и замедленного типов (сывороточная болезнь, крапивница, ангионевротический отек, анафилактический шок, контактные дерматиты и др.).

Кроме того, антибиотики могут обладать побочными свойствами неаллергической природы и токсическим действием.

Результатом прямого раздражающего действия антибиотиков являются диспепсические явления (тошнота, рвота, понос), болезненность на месте внутримышечного введения препарата, развитие флебитов и тромбофлебитов при внутривенных инъекциях антибиотиков.

Неблагоприятные эффекты возможны также со стороны печени, почек, кроветворения, слуха, вестибулярного аппарата и др. (примеры приведены в табл. 27.2).

Для многих антибиотиков типично развитие суперинфекции (дисбактериоз), которая связана с подавлением антибиотиками части сапрофитной флоры, например пищеварительного тракта.

Последнее может благоприятствовать размножению других микроорганизмов, не чувствительных к данному антибиотику (дрожжеподобных грибов, протея, синегнойной палочки, стафилококков).

Наиболее часто суперинфекция возникает на фоне действия антибиотиков широкого спектра действия.

Несмотря на большое распространение антибиотиков в медицинской практике, поиски новых, более совершенных препаратов этого типа ведутся в довольно значительных масштабах. Усилия исследователей направлены на создание таких антибиотиков, которые в максимальной степени сочетали положительные качества и были лишены отрицательных свойств.

Такие «идеальные» препараты должны обладать высокой активностью,  выраженной избирательностью действия , необходимым антимикробным спектром, бактерицидным характером дествия, проницаемостью через биологические мембраны (в том числе гематоэнцефалический барьер), эффективностью в разных биологических средах.

Они не должны вызывать быстрого развития устойчивости микроорганизмов и сенсибилизации  макроорганизма. Отсутствие попочных эффектов, минимальная токчность и большая широта терапевтического действия — все это также относится к числу основных требований, предъявляемых к новым антибиотикам.

Кроме того, важно, чтобы препараты антибиотиков были технически доступны для приготовления на фармацевтических предприятиях и имели низкую стоимость.

Харкевич Д. А. Фармакология

Источник: http://www.liveanimal.ru/veterinariya/lekarstvennye-preparaty/antibiotiki-klassifikatsiya-mekhanizm-dejstviya-pobochnye-effekty

Классификация антибиотиков по механизму действия

С учетом механизма действия антибиотики разделяют на три основные группы:

•   ингибиторы синтеза клеточной стенки микроорганизма (пенициллины, цефалоспорины, ванкомицин, тейкопланин и др.);

Нарушение синтеза клеточной стенки посредством ингибирования синтеза пептидогликана (пенициллин, цефалоспорин, монобактамы), образования димеров и их переноса к растущим цепям пептидогликана (ванкомицин, флавомицин) или синтеза хитина (никкомицин, туникамицин). Антибиотики, действующие по подобному механизму, обладают бактерицидным действием, не убивают покоящиеся клетки и клетки, лишенные клеточной стенки (L-формы бактерий).

•   антибиотики, нарушающие молекулярную организацию, функции клеточных мембран (полимиксин, нистатин, леворин, амфотерицин и др.);

Нарушение функционирования мембран: нарушение целостности мембраны, образование ионных каналов, связывание ионов в комплексы, растворимые в липидах, и их транспортировка. Подобным образом действуют нистатин, грамицидины, полимиксины.

•   антибиотики, подавляющие синтез белка и нуклеиновых кислот, в частности, ингибиторы синтеза белка на уровне рибосом (хлорамфеникол, тетрациклины, макролиды, линкомицин, аминогликозиды) и ингибиторы РНК-полимеразы (рифампицин) и др.

Подавление синтеза нуклеиновых кислот: связывание с ДНК и препятствование продвижению РНК-полимеразы (актидин), сшивание цепей ДНК, что вызывает невозможность её расплетания (рубомицин), ингибирование ферментов.

Нарушение синтеза пуринов и пиримидинов (азасерин, саркомицин).

Нарушение синтеза белка: ингибирование активации и переноса аминокислот, функций рибосом (стрептомицин, тетрациклин, пуромицин).

Ингибирование работы дыхательных ферментов (антимицины, олигомицины, ауровертин).

По характеру действия антибиотики делятся на бактерицидные и бактериостатические. Бактерицидное действие характеризуется тем, что под влиянием антибиотика наступает гибель микроорганизмов.

Достижение бактерицидного эффекта особенно важно при лечении ослабленных пациентов, а также в случаях заболевания такими тяжелыми инфекционными болезнями, как общее заражение крови (сепсис), эндокардит и др., когда организм не в состоянии самостоятельно бороться с инфекцией.

Бактерицидным действием обладают такие антибиотики, как различные пенициллины, стрептомицин, неомицип, канамицин, ванкомицин, полимиксин.

        При бактериостатическом действии гибель микроорганизмов не наступает, наблюдается лишь прекращение их роста и размножения.

При устранении антибиотика из окружающей среды микроорганизмы вновь могут развиваться.

В большинстве случаев при лечении инфекционных болезней бактериостатическое действие антибиотиков в совокупности с защитными механизмами организма обеспечивает выздоровление пациента.

Источник: https://students-library.com/library/read/29862-klassifikacia-antibiotikov-po-mehanizmu-dejstvia

Классификация антибиотиков: по происхождению, механизму действия

Рубрика: Лекарства

Классификация антибиотиков по происхождению – на первый взгляд, совершенно теоретическая тема, которая может заинтересовать только специалистов в области медицины.

Однако практически каждый человек в своей жизни хотя бы единожды оказывается в роли пациента, которому необходимо применять антибиотики. Многие люди не знают, чем эти препараты различаются между собой, как работают, однако у антибиотиков находится множество противников.

Обоснована ли эта враждебность, что собой представляют антибиотики и на какие группы они делятся – вот темы, которые мы раскроем в этой статье.

Что такое антибиотики

Исходя из названия, антибиотики – это вещества, которые направлены на действие против живых организмов. Многих пугает эта формулировка, т.к.

она воспринимается как нечто враждебное, направленное и против человека, ядовитое.

Конечно, фармакология не преследует цели отравления пациентов, и способ действия антибиотиков направлен на устранение микроорганизмов, которые становятся причиной инфекции.

Для начала разберемся, какие патогенные микроорганизмы могут поселяться в теле человека. К таким вредителям относятся бактерии, грибки, простейшие и вирусы.

Конечно, не стоит забывать и о многоклеточных паразитах, однако на борьбу с ними направлен совершенно иной класс препаратов, и эти животные вызывают иные виды заболеваний. Все микроорганизмы (т.е.

одноклеточные и неклеточные формы жизни) обобщаются термином «микробы», хоть это и не совсем верно по отношению к вирусам.

В соответствии с этим, противомикробные средства могут быть антибактериальными, противогрибковыми, противопротозойными и противовирусными.

Антибиотики относятся к первой группе препаратов и являют собой частный случай противомикробных средств.

Большинство антибактериальных препаратов эффективны только против бактерий, однако существуют вещества широкого спектра действия, а также комбинированные препараты, которые способны бороться и с другими микроорганизмами.

Какие бывают антибиотики

Антибактериальные средства можно делить на основании многих признаков. Одним из них является классификация антибиотиков по механизму действия.

Современные препараты могут воздействовать на бактерии двумя способами: либо разрушительно воздействовать на их внешние структуры, фактически убивая бактерию (это действие называется бактерицидным), либо приостанавливать рост и размножение бактерий, в результате чего оставшиеся организмы погибают под воздействием естественного иммунитета человека.

Бактерицидное действие считается более агрессивным, т.к. при гибели бактерий в организм человека выделяется множество токсичных веществ. Кроме того, погибают и бактерии естественной микрофлоры, что губительно сказывается на функционировании органов и систем.

Поэтому предпочтительным является применение бактериостатических препаратов, однако оно возможно не во всех клинических случаях – например, они неэффективны при необходимости экстренного воздействия, и их нельзя применять в некоторых случаях иммунодефицита.

Кроме того, существует классификация антибиотиков по спектру действия. Спектр действия антибиотических препаратов – это количество видов или групп бактерий, против которых эффективно конкретное средство. В соответствии с термином, их классификация по спектру включает в себя две группы – антибиотики с широким и с узким спектром действия.

В медицинской практике лекарства широкого спектра действия применяют в случае тяжелых инфекций, когда болезнь вызвана сразу несколькими видами возбудителей, или когда нет возможности выявить конкретный вид бактерий. В случаях средней и легкой степеней тяжести предпочтительнее выявлять конкретный вид возбудителя при помощи лабораторных анализов, и назначать антибиотик, эффективный именно против него.

Также существует классификация антибиотиков по химической структуре. Понятие химической структуры отражает общность некоторых препаратов на основании схожей организации молекулярной структуры.

При этом не обязательно, что весь ряд этих веществ был получен одинаковым методом – в одной и той же группе могут оказаться вещества, синтезированные в лаборатории или добытые из природного источника.

Современная классификация антибиотиков по химической структуре насчитывает множество самых разных препаратов – тетрациклины, пенициллины, сульфамиды, макролиды и т.д.

Как получают антибиотики

Принципы классификации антибиотиков предусматривают еще основание для их разделения на группы – это деление по способу получения препаратов. Это же деление подразумевает и классификацию по источнику получения.

Существует три основных группы антибиотиков: это природные, синтетические и полусинтетические.

Природные получают из растений, животных и микроорганизмов, синтетические создаются искусственным путем при помощи физико-химических реакций, а полусинтетические создаются на основе природного сырья, и затем модифицируются в лабораториях.

Антибиотические средства природного происхождения, в свою очередь, различаются по типу продуцента, т.е. источника, из которого было извлечено соединение. Современными методами антибиотики получают из самых разных источников: тканей рыб и зверей, растений, грибков, и даже из самих бактериальных микроорганизмов.

Важно понимать, что, не зависимо от источника получения препарата, по конечному эффекту лекарство вряд ли будет разительно отличаться. Основываясь на принципах химии, в частности, принципе единства химического строения, одно и то же вещество, имеющее идентичную структуру, обладает одинаковыми свойствами независимо от способа его получения.

Иными словами, не стоит уделять большое внимание способам получения лекарственного вещества и гоняться исключительно за препаратами натурального происхождения.

Напротив, химическая промышленность оказывает большую услугу фармакологии, стабилизируя природные соединения и делая их более эффективными.

Полученные полусинтетическим методом вещества порой во много раз лучше в сравнении с теми, что дают природные источники.

О разнообразии антибиотиков

Обычному человеку может быть не совсем понятно, по какой причине классификация современных антибиотиков столь обширна. Зачем нужен серийный выпуск огромного количества препаратов, несколько поколений, различия по типам, составу, принципу действия?

Дело в том, что бактерии – это организмы, которые способны чрезвычайно быстро мутировать, подстраиваясь под условия среды. Они могут приспособиться к антибиотику, если использовать его в недостаточной дозировке или нарушить схему приема.

Однако при этом они остаются чувствительными к другим препаратам, в составе которых лежит другое активное вещество, или же просто другая конфигурация того же вещества.

Лечение разными антибиотиками и разнообразие этих веществ являются своеобразным противодействием стремительной мутации патогенных организмов.

Читайте также:  Можно ли антибиотики запивать молоком

Кроме того, существует множество нюансов в каждом конкретном клиническом случае, которые требуют лечения антибиотиком с определенными эффектами или механизмом действия.

Например, какие-то из антибиотических средств существуют только в виде инъекционных растворов или порошков для разведения, какие-то – в виде таблеток, а какие-то только в виде средств для местного применения.

В зависимости от того, что является источником инфекции и где локализуется поражение, могут потребоваться те или иные способы введения препарата в организм.

Далее будут приведены краткие описания некоторых групп антибиотических препаратов.

Пенициллины

Пенициллины – это класс антибиотических препаратов, которые изначально имели природное происхождение и продуцентами которых являлся плесневый грибок. В более поздних поколениях появились полусинтетические вещества, которые обладают меньшей аллергенностью для организма человека и более высокой эффективностью по отношению к болезнетворным микробам.

Действие антибиотиков пенициллинового ряда – бактерицидное. Иными словами, конечный результат действия средств этой группы – уничтожение микроорганизмов через разрушение бактериальной стенки.

Для того, чтобы подробнее ознакомиться с перечнем чувствительных к этой группе средств бактерий, существуют специальные таблицы чувствительности с указанным спектром действия лекарства и примерами заболеваний, в которых оно используется.

Полусинтетические препараты отличаются структурой действующего вещества, которое получило защиту от пенициллазы – фермента, вырабатываемого мутировавшими бактериями, к которому природный пенициллин чувствителен. Эффектом воздействия этого фермента на препарат является разрушение последнего и утрата его эффективности.

Цефалоспорины

В классификации антибиотиков этой группе средств досталось самое широкое практическое распространение в мире. Лекарства цефалоспоринового ряда – самые применяемые в медицинской практике для лечения бактериальных инфекций.

Такую популярность они заслужили из-за широкого спектра действия, хорошей переносимости, малой токсичности и эффективности в лечении наиболее распространенных инфекций.

На сегодняшний день, благодаря достижениям микробиологии и фармацевтики, разработано 5 поколений цефалоспоринов, которые имеют различные формы выпуска и высокую надежность.

Карбапенемы

В отличие от предыдущих групп, эти препараты не имеют широкого распространения и являются т.н. «препаратами резерва» — т.е. применяются в тяжелых случаях больничных инфекций, когда штаммы бактерий приобрели устойчивость к более распространенным видам антибиотиков, и инфекция протекает тяжело. Эффективны даже при сепсисе и спасают жизнь пациентам даже в запущенных случаях инфицирования.

Макролиды

Среди классификации антибиотиков по химическому составу выделяются за счет принципов действия: в отличие от перечисленных выше групп, являются бактериостатическими препаратами и считаются наименее токсичными препаратами среди существующих, поэтому в отдельных случаях допускается их применение детьми и беременными женщинами.

Макролиды эффективны среди самых широко распространенных видов инфекционных заболеваний: болезней верхних и нижних дыхательных путей, инфекций органов малого таза, половых инфекций. Они не требуют длительного курса приема и накапливаются непосредственно в очаге поражения, чем достигается их высокая эффективность.

Правила приема антибиотиков

Вне зависимости от того, к какой из групп классификации относится препарат, насколько он современный и безопасный, прием антибиотиков требует определенной ответственности со стороны пациента. Несмотря на то, что антибиотики должны отпускаться исключительно по рецепту врача, многие граждане все же имеют к ним доступ и нередко занимаются самолечением. Чем грозит подобный энтузиазм?

Ранее в статье уже было сказано о том, что антибиотики чрезвычайно быстро адаптируются к новым условиям существования, поэтому прием их без должного на то основания (особенно однократный, «для профилактики») может привести к тому, что в организме пациента образуется устойчивый штамм бактерий. Для него самого это может обернуться развитием устойчивой хронической инфекции, а для окружающих – распространением эпидемии устойчивых к лекарству бактерий.

Следующее, что нужно знать об антибиотиках – это то, что препараты этой группы токсичны, и главным образом сказываются на работе печени. Поэтому во время приема этих лекарств важно соблюдать щадящую диету, избегать употребления жирной, острой, соленой пищи, маринадов и копченостей.

Категорически следует исключить алкоголь и спиртовые лекарственные растворы, т.к.

употребление этилового спирта может сказаться на ослабленном организме совершенно непредсказуемым образом, начиная от нарушения функций печени и заканчивая острой печеночной недостаточностью, которая, в свою очередь, может даже обернуться смертью.

И последнее – если врач назначил вам прием антибиотиков, не стоит их избегать. Прием антибиотиков по согласованной со специалистом схеме и с соблюдением указанных выше мер предосторожности не способен навредить организму.

Даже вероятные побочные эффекты способны нанести пациенту меньше вреда, чем инфекция.

Следует своевременно и качественно подходить к лечению инфекционных заболеваний, не дожидаясь их перехода в хроническую форму или распространения по организму.

Источник

Источник: http://neosensys.com/lekarstva/klassifikatsiya-antibiotikov-po-proishozhdeniyu-mehanizmu-deystviya/

Классификация антибиотиков: таблица по группам, механизму действия и происхождению

Антибиотики представляют собой химические соединения, используемые для уничтожения или ингибирования роста болезнетворных бактерий.

Тем не менее, этот термин теперь используется в более широком смысле, и включает в себя антибактериальные средства, произведенные из синтетических и полусинтетических соединений.

Пенициллин был первым антибиотиком, который успешно использовался при лечении бактериальных инфекций. Александр Флеминг впервые обнаружил его в 1928 году, но его потенциал для лечения от инфекций на тот период времени не был признан.

Эрнст Чейн

Десять лет спустя британский биохимик Эрнст Чейн и австралийский патолог Флори очистили, доработали пенициллин и показали эффективность препарата против многих серьезных бактериальных инфекций. Это положило начало производству антибиотиков, и с 1940 года препараты уже активно использовались для лечения.

Ближе к концу 1950-х годов ученые начали экспериментировать с добавлением различных химических групп к сердцевине молекулы пенициллина для генерации полусинтетических версий лекарственного средства.

Таким образом, препараты пенициллинового ряда стали доступны для лечения инфекций, вызванных разными подвидами бактерий, такими как стафилококки, стрептококки, пневмококки, гонококки и спирохеты.

Лишь туберкулезная палочка (микобактерия туберкулеза) не поддавалась воздействию пенициллиновых препаратов. Этот организм оказался весьма чувствительным к стрептомицину, антибиотику, который был выделен в 1943 г. Помимо того, стрептомицин продемонстрировал активность против многих других видов бактерий, в том числе бациллы брюшного тифа.

Говард Флори

Двумя следующими значительными открытиями стали вещества грамицидин и тироцидин, которые производятся бактериями рода Bacillus. Обнаруженные в 1939 году американским микробиологом французского происхождения Рене Дюбо, они были ценны в лечении поверхностных инфекций, но слишком токсичны для внутреннего использования.

В 1950-е годы исследователи обнаружили цефалоспорины, которые связаны с пенициллином, но выделены из культуры Cephalosporium Acremonium.

Следующее десятилетие открыло человечеству класс антибиотиков, известных как хинолоны. Группы хинолонов прерывают репликацию ДНК – важный шаг в размножения бактерий. Это позволило сделать прорыв в лечении инфекций мочевыделительной системы, инфекционного поноса, а также других бактериальных поражений организма, в том числе костей и белых кровяных телец.

к оглавлению ↑

Антибиотики могут быть классифицированы по нескольким направлениям.

к оглавлению ↑

По химической структуре и механизму действия

Группы антибиотиков, разделяющие ту же самую или аналогичную химическую структуру, как правило, показывают аналогичные модели антибактериальной активности, эффективности, токсичности и аллергенного потенциала (таблица 1).

Таблица 1 – Классификация антибиотиков по химической структуре и механизму действия (включая международные названия).

Виды антибиотиков (химическая структура)Механизм действияНазвания препаратов
В-лактамные антибиотики:

  • Пенициллины;
  • Цефалоспорины;
  • Карбапенемы.
Ингибирование бактериального синтеза клеточной стенки
  • Пенициллины:
    • Пенициллин;
    • Амоксицилин;
    • Флуклоксациллин.
  • Цефалоспорины:
    • Цефокситин;
    • Цефотаксим;
    • Цефтриаксон;
  • Карбапенемы: Имипенем.
Макролиды Ингибирование бактериального синтеза белка
  • Эритромицин;
  • Азитромицин;
  • Кларитромицин.
Тетрациклины Ингибирование бактериального синтеза белка
  • Тетрациклин;
  • Миноциклин;
  • Доксициклин;
  • Лимециклин.
Фторхинолоны Ингибирует синтез бактериальной ДНК
  • Норфлоксацин;
  • Ципрофлоксацин;
  • Эноксацин;
  • Офлоксацин.
Сульфамиды Блокирует бактериальный метаболизм клеток путем ингибирования ферментов
  • Ко-тримоксазол;
  • Триметоприм.
Аминогликозиды Ингибирование бактериального синтеза белка
Имидазолы Ингибирует синтез бактериальной ДНК Метронидазол
Пептиды Ингибирование бактериального синтеза клеточной стенки Бацитрацин
Линкозамиды Ингибирование бактериального синтеза белка
Другие Ингибирование бактериального синтеза белка
  • Фузидиевая кислота;
  • Мупироцин.

Антибиотики работают через различные механизмы их воздействия. Некоторые из них проявляют антибактериальные свойства путем ингибирования бактериального синтеза клеточной стенки.

 Эти представители называются β-лактамные антибиотики. Они специфически действуют на стенки определенных видов бактерий, угнетая механизм связывания боковых цепочек пептидов их клеточной стенки.

В результате клеточная стенка и форма бактерий меняется, что приводит к их гибели.

Другие противомикробные средства, такие как аминогликозиды, хлорамфеникол, эритромицин, клиндамицин и их разновидности, ингибируют белковый синтез в бактериях.

Основной процесс синтеза белков у клеток бактерий и клеток живых существ схож, но белки, участвующие в процессе, разные.

Антибиотики, используя эти различия, связывают и ингибируют белки бактерий, тем самым, предотвращая синтез новых белков и новых бактериальных клеток.

Антибиотики, такие как полимиксин В и полимиксин Е (колистин) соединяются с фосфолипидами в клеточной мембране бактерии и препятствуют выполнению их основных функций, выступая в качестве селективного барьера. Клетка бактерии погибает. Так как другие клетки, включая клетки человека, имеют подобные или идентичные фосфолипиды, эти препараты довольно токсичны.

Сульфаниламиды способны ингибировать синтез фолиевой кислоты, поскольку они сходны с промежуточным соединением — пара-аминобензойной кислотой, которая в последствии с помощью фермента превращается в фолиеву кислоту.

Сходство в структуре между этими соединениями приводит к конкуренции между пара-аминобензойной кислотой и сульфонамидом за фермент, ответственный за превращение промежуточного продукта в фолиеву кислоту. Эта реакция обратима после удаления химического вещества, которое приводит к ингибированию, и не приводит к гибели микроорганизмов.

Такой антибиотик, как рифампицин, препятствует синтезу бактерий путем связывания бактериального фермента, ответственного за дублирование РНК. Клетки человека и бактерии используют сходные, но не идентичные ферменты, поэтому применение препаратов в терапевтических дозах не влияет губительно на клетки человека.

к оглавлению ↑

По спектру действия

Антибиотики могут быть классифицированы по их спектру действия:

  • препараты узкого спектра действия;
  • медикаменты широкого спектра действия.

Агенты узкого диапазона действия (например, пенициллин) влияют в первую очередь на грамположительные микроорганизмы. Антибиотики широкого спектра воздействия, такие как доксициклин и хлорамфеникол, влияют как на грамположительные, так и некоторые грамотрицательные микроорганизмы.

к оглавлению ↑

По происхождению

Антибиотики могут быть классифицированы по происхождению на природные антибиотики и антибиотики полусинтетического происхождения (химиопрепараты).

К категории антибиотиков природного происхождения относятся следующие группы:

  1. Бета-лактамные препараты.
  2. Тетрациклиновый ряд.
  3. Аминогликозиды и аминогликозидные средства.
  4. Макролиды.
  5. Левомицетин.
  6. Рифампицины.
  7. Полиеновые препараты.

В настоящее время существует 14 групп антибиотиков полусинтетического происхождения. К ним относят:

  1. Сульфаниламиды.
  2. Группа фторхинолов/хинолонов.
  3. Имидазоловые препараты.
  4. Оксихинолин и его производные.
  5. Производные нитрофурана.

к оглавлению ↑

Использование и применение антибиотиков

Основной принцип применения противомикробных препаратов основан на гарантии, что пациент получает то средство, к которому чувствителен целевой микроорганизм, при достаточно высокой концентрации, чтобы быть эффективными, но не вызывают побочных эффектов, и в течение достаточного промежутка времени, чтобы гарантировать, что инфекция полностью ликвидирована.

Они особенно полезны в борьбе со смешанными инфекциями и при лечении инфекций, когда нет времени для проведения тестов на чувствительность. В то время как некоторые антибиотики, такие как полусинтетические пенициллины и хинолоны, могут быть приняты перорально, другие должны применяться в виде внутримышечных или внутривенных инъекций.

Способы применения противомикробных препаратов представлены на рисунке 1.

Способы введения антибиотиков

Проблемой, которая сопровождает антибактериальную терапию с первых дней открытия антибиотиков, является сопротивление бактерий к антимикробным препаратам.

Лекарственное средство может убить практически всех бактерий, вызывающих заболевания у пациента, но несколько бактерий, которые являются генетически менее уязвимыми к данному препарату, могут выжить. Они продолжают воспроизводиться и передают свою устойчивость другим бактериям через процессы генного обмена.

Беспорядочное и неточное использование антибиотиков способствует распространению бактериальной резистентности.

Источник: http://OAntibiotikah.ru/drugoe/klassifikaciya-antibiotikov.html

Антибиотики и их применение в сельском хозяйстве

Сохрани ссылку в одной из сетей:

Классификация антибиотиков по механизму из биологического действия

    1. Антибиотики, ингибирующие синтез клеточной стенки (пенициллины, тацитрацин, ванкомицин, цефалоспорин, Д-циклосерин).

    2. Антибиотики, нарушающие функции мембран (альтомиицин, аскозин, грамицидины, кондицидины, нистатин, трихомицин, эндомицин и др.).

    3. Антибиотики, избирательно подавляющие синтез (обмен) нуклеиновых кислот:

      • подавляющие синтез РНК (актиномицин, гризеофульвин, канамицин, неомицин, новобиоцин, оливомицин и др.);

      • подавляющие синтез ДНК (актидион, брунеомицин, митомицины, новобиоцин, саркомицин, эдеин и др.).

    4. Антибиотики — ингибиторы синтеза пуринов и пиримидинов (азасерин, декоинин, саркомицин и др.).

    5. Антибиотики, подавляющие синтез белка (бацитрацин, виомицин, канамицин, неомицин, тетрациклины, хлорамфеникол, эритромицин и др.).

    6. Антибиотики, являющиеся ингибиторами дыхания (антимицины, олигомицины, патулин, пиацианин, усниновая кислота и др.).

    7. Антибиотики — ингибиторы окислительного фосфорилирования (валиномицин, грамицидины, колицины, олигомицин, тироцидин и др.).

    8. Антибиотики, обладающими антиметаболитными свойствами. Антибиотические вещества, образуемые некоторыми актиномицетами и плесневыми грибами. Эти антибиотики выступают в качестве антиметаболитов аминокислот, витаминов, нуклеиновых кислот.

Читайте также:  Растворители для антибиотиков

К числу антибиотиков-антиметаболитов относятся:

      • фураномицин — антиметаболит лейцина; антибиотик — антагонист метаболизма аргинина и орнитина, образуемый Act. griseovariabilis;

      • антибиотик — антагонист метионина и тиамина, выделенный из культуры Act. globisporus;

      • антибиотическое вещество — антиметаболит аргинина, лизина или гистидина, синтезируемое Act. macrosporus (термофилл).

Единицы биологической активности

Выражение величин биологической активности антибиотиков обычно производят в условных единицах, содержащихся в 1 мл раствора (ед./мл) или в 1 мг препарата (ед./мг). За единицу антибиотической активности принимают минимальное количество антибиотика, способное подавить развитие или задержать рост стандартного штамма тест-микроба в определенном объеме питательной среды.

Единицей антибиотической активности пенициллина считают минимальное количество препарата, способное задерживать рост золотистого стафиллококка штамм 209 в 50 мл питательного бульона.

Для стрептомицина единица активности будет иной, а именно: минимальное количество антибиотика, задерживающее рост E. с oli в одном миллилитре питательного бульона.

После того как многие антибиотики были получены в химическом чистом виде, появилась возможность для ряда из них выразить условные единицы биологической активности в единицах массы.

Установлено, что 1 мг чистого основания стрептомицина эквивалентен 1000 единицам биологической активности. Следовательно, одна единица активности стрептомицина эквивалентна одному микрограмму (мкг) чистого основания этого антибиотика.

В связи с этим в настоящее время в большинстве случаев количество стрептомицина выражают в мкг/мг или в мкг/мл.

Чем ближе число мкг/мг в препаратах стрептомицина стоит к 1000, тем, следовательно, чище данный препарат, тем меньше он содержит балластных веществ.

У таких антибиотиков, как карбомицин, эритромицин, новобиоцин, нистатин, трихотецин и некоторых других, одна единица активности эквивалентна или приблизительно эквивалентна 1 мкг вещества.

Однако у ряда антибиотиков единица биологической активности значительно отличается от 1 мкг вещества. Например, 1 мг чистого основания неомицина содержит 300 ед. активности. Поэтому 1 единица активности этого антибиотика эквивалентна 3,3 мкг.

Для бензилпенициллина 1 ед. активности эквивалентна примерно 0,6 мкг, так как 1 мкг антибиотика содержит 1667 ед. (оксфордских). Для фумагиллина за единицу фагоцидного действия принято брать 0,1 мкг чистого вещества.

1 единица бацитрацина эквивалентна 20 мкг вещества.

Соотношение единиц биологического действия (ед.) некоторых стандартных антибиотиков и единиц их массы приведено в таблице.

Соотношение единиц действия некоторых антибиотиков и единиц массы этих антибиотиков (по Герольд, 1966)

Антибиотик — стандарт

Ед./мг

Единица массы

Альбомицин (сульфат)

700000

Нет

Бацитрацин

52

Нет

Эритромицин (основание)

1000

1 мкг основания

Хлортетрациклин (хлоргидрат)

1000

1 мкг чистого хлоргидрата

Карбомицин (основание)

1000

1 мкг основания

Окситетрациклин (дигидрат)

925

1 мкг чистой безводной амфотерной формы

Пенициллин (натриевая соль)

1667

0,587 мкг чистой кристаллической калиевой соли

Полимиксин В (сульфат)

7200

Нет

Саркомицин

12

Нет

Тетрациклин (тригидрат)

890

1 мкг чистой безводной амфотерной формы

Стрептомицин (сульфат)

800

1 мкг чистого основания

Биомицин (сульфат)

745

1 мкг чистого основания

Пенициллин — антибиотик, образуемый филаментозным грибом.

Огромная группа организмов, принадлежащих к грибам, образует большое число (около 400) разнообразных антибиотических веществ, отдельные представители которых завоевали всеобщее признание в качестве лечебных средств. Основная же часть грибных антибиотиков не нашла еще практического применения главным образом в силу своей высокой токсичности.

В медицинской и сельскохозяйственной практиках имеют значение ограниченное число антибиотиков, образуемых некоторыми видами грибов, а именно: пенициллин, фумагиллин и некоторые другие.

Пенициллин (Penicillin). Известный английский бактериолог Александр Флеминг опубликовал в 1929 г. сообщение о литическом действии зеленой плесени на стафиллококки. Флеминг выделил гриб, который оказался Penicillium notatum, и установил, что культуральная жидкость этой плесени способна оказывать антибактериальное действие по отношению к патогенным коккам.

Культуральная жидкость гриба, содержащая антибактериальное вещество, названо Флемингом пенициллином.

Попытки Флеминга выделить активное начало, образуемое Penicillium, не увенчалось успехом.

Несмотря на это, Флеминг указал на перспективы практического применения обнаруженного им фактора.

Спустя примерно десять лет после сообщения Флеминга Е. Чейн начал с конца 1938 г. изучать пенициллин. Он был убежден, что это вещество — фермент. В 1940 г. Флори и Чейн получили индивидуальное соединение пенициллина, который оказался не ферментом, а низкомолекулярным веществом.

Об антагонистических свойствах зеленой плесени (Penicillium) было известно задолго до наблюдений Флеминга. Следует указать, что еще в глубокой древности индейцы из племени майя использовали зеленую плесень, выращенную на зернах кукурузы, для лечения ран. Философ, врач и естествоиспытатель Абу-Али Ибн-Сина (Авиценна) рекомендовал использовать плесень при гнойных заболеваниях.

Ибн-Сина написал пятитомный «Канон врачебной науки», который был впервые переведен на латинский язык и издан в Европе через 400 лет после его смерти — в 1437 г. На русском языке «Канон» издан лишь в 1960 г.

Авиценна утверждал, что заразные заболевания вызываются невидимыми для глаза живыми возбудителями, которые могут передаваться от больного к здоровому через воздух и воду. Заключение это сделано за 600 лет до изобретения микроскопа.

В русской народной медицине с давних времен применялись для лечения ран присыпки, состоящие из зеленой плесени.

В работах русских ученых Манассеина и Полотебнова в 1871 – 1872 гг. указывалось на отношение Penicillium glancum к разным бактериям.

Полотебнов впервые в научно-клинической обстановке изучил применение зеленой плесени, показав при этом практические ценные результаты. Манассеин установил, что молодая культура плесени подавляет рост некоторых бактерий. В 1877 г.

русский врач Лебединский доложил о подавлении плесенью бактерий желудочно-кишечного тракта.

Английский физик Тиндаль описал в 1876 г. способность Penicillium подавлять бактерии, находящиеся в жидкости, но объяснял это явление чисто физическими причинами.

Таким образом, приведенные данные показывают, что человечество на разных уровнях своего развития знало о целебных свойствах зеленой плесени. Однако эти сведения носили разрозненный характер и касались лишь воздействия самого гриба на микроорганизмы. В то время не могло быть и речи о выделении и изучении активного начала, образуемого плесенью.

И лишь когда в 1940 г. Флори и Чейн получили препараты (пенициллин) в очищенном виде, после этого появился широкий научный интерес к этому антибиотическому веществу.

Изучение пенициллина в Советском Союзе было начато З. В. Ермольевой.

В 1942 г. под руководством Ермольевой в лаборатории биохимии микробов Всесоюзного института экспериментальной медицины в Москве был получен первый отечественный пенициллин — крустозин, сыгравший огромную роль в спасении жизней воинов Советской Армии, раненных на полях сражений Великой Отечественной войны.

В январе 1944 г. Москву посетила группа иностранных ученых, среди которых был профессор Флори, привезший с собой английский штамм продуцента пенициллина. Сравнение двух штаммов (советского и английского) показало, что советский штамм образует 28 ед./мл, а английский — 20 ед./мл (Ермольева, 1967).

После того как было установлено, что пенициллин обладает мощными лечебными свойствами, начались интенсивные поиски продуцентов этого антибиотика. В результате большого числа работ удалось установить, что пенициллин могут образовывать многие виды Penicillium (Penic. chrysogenum, Penic.

bericompactum, Penic. nigricans, Penic. turbatum, Penic. steckii, Penic. corylophilum), а также некоторые виды Aspergillus (Asp. flavus, Asp. flavipes, Asp. janus, Asp. nidulans и др.). Есть указания, что пенициллин образуется также термофильным организмом Malbranchia pulchella (см.

Беккре, 1963).

Первые выделенные из естественных субстратов штаммы Penicillium как наиболее активные продуценты пенициллина образовывали не более 20 единиц (12 мкг) антибиотика на 1 мл культуральной жидкости.

Даже промышленное производство этого ценнейшего препарата было начато при активности культуральной жидкости не выше 30 мкг/мл или 50 ед.

/мл насколько низка эта активность, можно судить по тому факту, что в настоящее время в промышленных условиях получают культуральные жидкости с содержанием пенициллина более 15000 ед./мл, а отдельные штаммы способны синтезировать антибиотик в количестве до 25 тыс. ед./мл.

Получение высоких выходов антибиотика достигнуто в результате изучения условий его образования и селекции наиболее активных штаммов продуцента пенициллина.

Действие пенициллина на бактерии. Вопросу рассмотрения антибиотической активности пенициллина в отношении ряда микроорганизмов уделено достаточно много внимания.

Установлено, что пенициллин оказывает антимикробное действие в отношении некоторых грамположительных бактерий (стафиллококков, стрептококков, диплококков и некоторых других) и практически неактивен в отношении грамотрицательных видов и дрожжей.

Высокие концентрации пенициллина (10 мг/мл) вызывают гибель клеток гаплоидного штамма дрожжей Saccharomyces cerevisiae и   E. coli (Lingel, oltmanns, 1963).

По характеру действия на микроорганизмы пенициллин является бактериостатическим и при определенных концентрациях бактерицидным антибиотиком.

Различные типы пенициллинов обладают различной степенью биологической активности. В особенности это различие заметно в опытах in vivo.

Сравнение биологической активности различных типов пенициллинов в отношении некоторых микроорганизмов в опытах in vivo

Тест-организм

Относительная активность

Бензил-

пенициллин

(G)

2-пентил-

пенициллин

(F)

n-гептил-пенициллин

(K)

Окси-

бензил-

пенициллин (Х)

Spirochaeta novyi

Pneumococcus типа 1

Strept haemolitycus

Strept pyogenes

Treponema pallidum

100

100

100

100

100

55

85

100

50

17

35

17

60

9

9

22

140

500

260

5

Как следует из данных таблицы, n-гептилпенициллин менее активен, чем остальные типы пенициллинов. Это, по-видимому, связано с тем, что n-гептилпенициллин значительно быстрее инактивируется в организме.

Чувствительные к пенициллину микроорганизмы относительно легко и быстро приобретают устойчивость к антибиотику. Так, Staph. aureus прекращает развитие при концентрации пенициллина 0,05 – 0,06 ед.

/мл в среде, но уже при 20 последовательных пересевах с постепенно увеличивающимися концентрациями антибиотика устойчивость стафилококка возрастает в 700 раз, т. е. для остановки роста бактерии требуется концентрация пенициллина равная 42 ед.

/мл, а после 40 пересевов его устойчивость возрастает более чем в 5500 раз.

Микроорганизмы, приобретшие устойчивость к одному из типов пенициллина, как правило, резистентны и к другим типам пенициллина.

У некоторых бактерий устойчивость к пенициллинам сопровождается способностью образовывать пенициллиназу.

В ряде случаев микроорганизмы с приобретением устойчивости к пенициллину теряют вирулентность. Но вирулентность восстанавливается после нескольких пассажей через животных и при этом сохраняется резистентность к антибиотикам.

Различные типы пенициллинов и строение их радикалов

Название пенициллина

Строение радикала (R)

Общепринятое

условное

Бензилпенициллин

n-Оксибензилпенициллин

2-Пентенилпенициллин

n-Гептилпенициллин

n-Амилпенициллин

Феноксиметилпенициллин

Аллилмеркаптометилпенициллин

G

X

F

K

Дигидро F

V

O

Пенициллины, полученные в результате смешанного (биологического и химического) синтеза (полусинтетические пенициллины)

Тип пенициллина

Общепринятое название

Строение радикала

Кислотоустойчивые препараты

a — Феноксиэтилпенициллин

Фенетициллин

a -Феноксипропилпенициллин

Пропициллин

a -Феноксибензилпенициллин

Фенбенициллин

Пенициллиназоустойчивые препараты

2-6-диметоксифенилпенициллин

Метициллин

Кислото- и пенициллиназаустойчивые препараты

5-метил-3-фенил-4-изоксиазолилпенициллин

Оксациллин

2-этокси-1-нафтилпенициллин

Нафциллин

2-бифенилпенициллин

Дифенициллин

3-О-хлорфенил-5-метил-4-изооксазолил

Клоксациллин

Кислотоустойчивые и широкоспектровые препараты

a — d -(-) Аминобензилпенициллин

Ампициллин

  1. Реферат

    С древних времен известны отдельные биотехнологические процессы, используемые в различных сферах практической дея­тельности человека. К ним относятся хлебопечение, виноделие, приготовление кисло-молочных продуктов и т.

  2. Реферат

    Общее признание получила гигиеническая классификация ядов, предложенная С.Д. Заугольниковым и сотр. (1967), в основу которой положена количественная оценка токсическойческой опасности химических веществ на основе экспериментально установленной

  3. Документ

    11.7 Выращивание прядильных культур 01.11.8 Выращивание прочих сельскохозяйственных культур, не включенных в другие группировки 01.1 Овощеводство; декоративное садоводство и производство продукции питомников 01.

  4. Автореферат

    Защита состоится «22» октября 2010 года в 14 часов 00 мин на заседании объединенного диссертационного совета ОД 53.24.01 в РГП на ПХВ «Институт микробиологии и вирусологии» Комитета Науки Министерства образования и науки Республики

  5. Документ

    11. Выращивание картофеля, столовых корнеплодных и клубнеплодных культур с высоким содержанием крахмала или инулина 01.11.3 Выращивание масличных культур 01.

Источник: https://refdb.ru/look/2841809-p2.html

Ссылка на основную публикацию